Limits...
Crenarchaeal biofilm formation under extreme conditions.

Koerdt A, Gödeke J, Berger J, Thormann KM, Albers SV - PLoS ONE (2010)

Bottom Line: However, only limited information is available for the development of archaeal communities that are frequently found in many natural environments.While flagella mutants had no phenotype in two days old static biofilms of S. solfataricus, a UV-induced pili deletion mutant showed decreased attachment of cells.The study gives first insights into formation and development of crenarchaeal biofilms in extreme environments.

View Article: PubMed Central - PubMed

Affiliation: Molecular Biology of Archaea, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.

ABSTRACT

Background: Biofilm formation has been studied in much detail for a variety of bacterial species, as it plays a major role in the pathogenicity of bacteria. However, only limited information is available for the development of archaeal communities that are frequently found in many natural environments.

Methodology: We have analyzed biofilm formation in three closely related hyperthermophilic crenarchaeotes: Sulfolobus acidocaldarius, S. solfataricus and S. tokodaii. We established a microtitre plate assay adapted to high temperatures to determine how pH and temperature influence biofilm formation in these organisms. Biofilm analysis by confocal laser scanning microscopy demonstrated that the three strains form very different communities ranging from simple carpet-like structures in S. solfataricus to high density tower-like structures in S. acidocaldarius in static systems. Lectin staining indicated that all three strains produced extracellular polysaccharides containing glucose, galactose, mannose and N-acetylglucosamine once biofilm formation was initiated. While flagella mutants had no phenotype in two days old static biofilms of S. solfataricus, a UV-induced pili deletion mutant showed decreased attachment of cells.

Conclusion: The study gives first insights into formation and development of crenarchaeal biofilms in extreme environments.

Show MeSH
Lectin-based analysis of developing static biofilm of S. acidocaldarius during a time course of seven days.Samples were treated with DAPI (blue channel), Con A (green channel) and IB4 (yellow channel) and analyzed by CSLM. For each channel the top view and the side view is presented. An overlay shows all three channels. Bars are 20 µm in length. CLSM: confocal laser scanning microscopy.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2991349&req=5

pone-0014104-g006: Lectin-based analysis of developing static biofilm of S. acidocaldarius during a time course of seven days.Samples were treated with DAPI (blue channel), Con A (green channel) and IB4 (yellow channel) and analyzed by CSLM. For each channel the top view and the side view is presented. An overlay shows all three channels. Bars are 20 µm in length. CLSM: confocal laser scanning microscopy.

Mentions: All experiments described so far were performed using 2–3 days old biofilms of Sulfolobus spp.. In order to monitor further community development under static conditions, biofilms of S. acidocaldarius were allowed to develop for seven days. Each day one sample was treated with DAPI and analyzed by CLSM. The thickness of the biofilm increased from 30 µM in height on day three to 150 µM (including EPS structures) on day seven (Fig. 5AB). For a more detailed analysis of the maturation of biofilm formation by S. acidocaldarius the cells were inoculated in large Petri dishes in which polylysine covered glass slides had been placed. These slides were then analyzed by scanning electron microscopy (SEM). Only 15 minutes after the addition of the cell suspension a few cells attached to the surface, and some budding of vesicles was visible (Fig. S4A). After two hours there was not an apparent increase in the number of attached cells, but nearly all attached cells had formed filamentous structures adhering the cells to the surface or neighboring cells (Fig. S4B). After 36 hours, microcolonies started to form with only a few cells remaining on the rest of the surface whereas after 48 hours the surface of the glass plates was completely covered with cells. In the microcolonies, cells appeared to be connected by a network of filamentous structures as was observed previously following lectin staining (Fig. 5D). These connections grew denser and also increasing extracellular material accumulated in the later stages of the biofilm formation (Fig. 5D). Interestingly, on the seventh day the layer of cells at the surface of the glass slide apparently disappeared and the density of cells in the detailed view was reduced compared with the sixth day (Fig. 5C/D). To test whether the extracellular material visible in the closer SEM view of the towering structures did indeed consist of EPS, S. acidocaldarius biofilms were incubated for seven days, stained with lectins, as described above, and analyzed by CLSM (Fig. 6). Towering structures were formed which were initiated by the secretion of EPS and then colonized by cells.


Crenarchaeal biofilm formation under extreme conditions.

Koerdt A, Gödeke J, Berger J, Thormann KM, Albers SV - PLoS ONE (2010)

Lectin-based analysis of developing static biofilm of S. acidocaldarius during a time course of seven days.Samples were treated with DAPI (blue channel), Con A (green channel) and IB4 (yellow channel) and analyzed by CSLM. For each channel the top view and the side view is presented. An overlay shows all three channels. Bars are 20 µm in length. CLSM: confocal laser scanning microscopy.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2991349&req=5

pone-0014104-g006: Lectin-based analysis of developing static biofilm of S. acidocaldarius during a time course of seven days.Samples were treated with DAPI (blue channel), Con A (green channel) and IB4 (yellow channel) and analyzed by CSLM. For each channel the top view and the side view is presented. An overlay shows all three channels. Bars are 20 µm in length. CLSM: confocal laser scanning microscopy.
Mentions: All experiments described so far were performed using 2–3 days old biofilms of Sulfolobus spp.. In order to monitor further community development under static conditions, biofilms of S. acidocaldarius were allowed to develop for seven days. Each day one sample was treated with DAPI and analyzed by CLSM. The thickness of the biofilm increased from 30 µM in height on day three to 150 µM (including EPS structures) on day seven (Fig. 5AB). For a more detailed analysis of the maturation of biofilm formation by S. acidocaldarius the cells were inoculated in large Petri dishes in which polylysine covered glass slides had been placed. These slides were then analyzed by scanning electron microscopy (SEM). Only 15 minutes after the addition of the cell suspension a few cells attached to the surface, and some budding of vesicles was visible (Fig. S4A). After two hours there was not an apparent increase in the number of attached cells, but nearly all attached cells had formed filamentous structures adhering the cells to the surface or neighboring cells (Fig. S4B). After 36 hours, microcolonies started to form with only a few cells remaining on the rest of the surface whereas after 48 hours the surface of the glass plates was completely covered with cells. In the microcolonies, cells appeared to be connected by a network of filamentous structures as was observed previously following lectin staining (Fig. 5D). These connections grew denser and also increasing extracellular material accumulated in the later stages of the biofilm formation (Fig. 5D). Interestingly, on the seventh day the layer of cells at the surface of the glass slide apparently disappeared and the density of cells in the detailed view was reduced compared with the sixth day (Fig. 5C/D). To test whether the extracellular material visible in the closer SEM view of the towering structures did indeed consist of EPS, S. acidocaldarius biofilms were incubated for seven days, stained with lectins, as described above, and analyzed by CLSM (Fig. 6). Towering structures were formed which were initiated by the secretion of EPS and then colonized by cells.

Bottom Line: However, only limited information is available for the development of archaeal communities that are frequently found in many natural environments.While flagella mutants had no phenotype in two days old static biofilms of S. solfataricus, a UV-induced pili deletion mutant showed decreased attachment of cells.The study gives first insights into formation and development of crenarchaeal biofilms in extreme environments.

View Article: PubMed Central - PubMed

Affiliation: Molecular Biology of Archaea, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.

ABSTRACT

Background: Biofilm formation has been studied in much detail for a variety of bacterial species, as it plays a major role in the pathogenicity of bacteria. However, only limited information is available for the development of archaeal communities that are frequently found in many natural environments.

Methodology: We have analyzed biofilm formation in three closely related hyperthermophilic crenarchaeotes: Sulfolobus acidocaldarius, S. solfataricus and S. tokodaii. We established a microtitre plate assay adapted to high temperatures to determine how pH and temperature influence biofilm formation in these organisms. Biofilm analysis by confocal laser scanning microscopy demonstrated that the three strains form very different communities ranging from simple carpet-like structures in S. solfataricus to high density tower-like structures in S. acidocaldarius in static systems. Lectin staining indicated that all three strains produced extracellular polysaccharides containing glucose, galactose, mannose and N-acetylglucosamine once biofilm formation was initiated. While flagella mutants had no phenotype in two days old static biofilms of S. solfataricus, a UV-induced pili deletion mutant showed decreased attachment of cells.

Conclusion: The study gives first insights into formation and development of crenarchaeal biofilms in extreme environments.

Show MeSH