Limits...
Crenarchaeal biofilm formation under extreme conditions.

Koerdt A, Gödeke J, Berger J, Thormann KM, Albers SV - PLoS ONE (2010)

Bottom Line: However, only limited information is available for the development of archaeal communities that are frequently found in many natural environments.While flagella mutants had no phenotype in two days old static biofilms of S. solfataricus, a UV-induced pili deletion mutant showed decreased attachment of cells.The study gives first insights into formation and development of crenarchaeal biofilms in extreme environments.

View Article: PubMed Central - PubMed

Affiliation: Molecular Biology of Archaea, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.

ABSTRACT

Background: Biofilm formation has been studied in much detail for a variety of bacterial species, as it plays a major role in the pathogenicity of bacteria. However, only limited information is available for the development of archaeal communities that are frequently found in many natural environments.

Methodology: We have analyzed biofilm formation in three closely related hyperthermophilic crenarchaeotes: Sulfolobus acidocaldarius, S. solfataricus and S. tokodaii. We established a microtitre plate assay adapted to high temperatures to determine how pH and temperature influence biofilm formation in these organisms. Biofilm analysis by confocal laser scanning microscopy demonstrated that the three strains form very different communities ranging from simple carpet-like structures in S. solfataricus to high density tower-like structures in S. acidocaldarius in static systems. Lectin staining indicated that all three strains produced extracellular polysaccharides containing glucose, galactose, mannose and N-acetylglucosamine once biofilm formation was initiated. While flagella mutants had no phenotype in two days old static biofilms of S. solfataricus, a UV-induced pili deletion mutant showed decreased attachment of cells.

Conclusion: The study gives first insights into formation and development of crenarchaeal biofilms in extreme environments.

Show MeSH
Effect of varying conditions on biofilm formation of the three Sulfolobus strains in microtitre plates.S. acidocaldarius (first row), S. tokodaii (second row) and S. solfataricus (third row) were incubated at different temperatures (first column), pH values (second column), iron concentrations (third column) and a combination of different iron concentrations and pH values (fourth column). The graphs show the correlation of the measured cristal violet absorbance of attached cells (OD570 nm) and the growth of the planktonic cells (OD600 nm) to emphasize the amount of cells in a sessile lifestyle at the tested condition. Each point and standard deviation is the mean of 8 samples per condition. Temp, temperature.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2991349&req=5

pone-0014104-g001: Effect of varying conditions on biofilm formation of the three Sulfolobus strains in microtitre plates.S. acidocaldarius (first row), S. tokodaii (second row) and S. solfataricus (third row) were incubated at different temperatures (first column), pH values (second column), iron concentrations (third column) and a combination of different iron concentrations and pH values (fourth column). The graphs show the correlation of the measured cristal violet absorbance of attached cells (OD570 nm) and the growth of the planktonic cells (OD600 nm) to emphasize the amount of cells in a sessile lifestyle at the tested condition. Each point and standard deviation is the mean of 8 samples per condition. Temp, temperature.

Mentions: To enable rapid quantification of surface-attached biomass, we adapted the commonly used microtitre plate assay based on crystal violet binding [23] for use at high temperatures. To prevent evaporation of the medium it was essential to cover the plates with gas permeable sealing membranes. For incubation at 76°C the plates were placed into a metal container to further prevent evaporation of the medium. The requirements for adherence to abiotic surfaces can vary greatly among microorganisms, therefore, different plates with hydrophilic and hydrophobic surfaces were tested. All three strains, S. acidocaldarius, S. solfataricus and S. tokodaii, attached preferentially to hydrophilic surfaces at the well's walls (data not shown). The conditions for biofilm formation were further optimized for each of the strains. The amount of biomass detected after two days was strongly dependent on the starting OD600 of the inoculum and differed for each strain (Fig. S1). Based on these results, for all subsequent experiments the starting OD for S. acidocaldarius was 0.01, for S. solfataricus was 0.03 and for S. solfataricus was 0.06. It was confirmed that the crystal violet values reflected the amount of biomass formed, as the obtained values correlated with the OD values measured from resuspended biofilm cells (data not shown). For the presentation of the microtitre plate assay results we show the correlation of the crystal violet release of the biofilm cells (OD570 nm) divided by the growth of the planktonic cells (OD600 nm) to emphasize the fraction of the cells which grow as biofilm under each condition in Fig. 1 and the absolute amount of surface-associated cells in Fig. S2.


Crenarchaeal biofilm formation under extreme conditions.

Koerdt A, Gödeke J, Berger J, Thormann KM, Albers SV - PLoS ONE (2010)

Effect of varying conditions on biofilm formation of the three Sulfolobus strains in microtitre plates.S. acidocaldarius (first row), S. tokodaii (second row) and S. solfataricus (third row) were incubated at different temperatures (first column), pH values (second column), iron concentrations (third column) and a combination of different iron concentrations and pH values (fourth column). The graphs show the correlation of the measured cristal violet absorbance of attached cells (OD570 nm) and the growth of the planktonic cells (OD600 nm) to emphasize the amount of cells in a sessile lifestyle at the tested condition. Each point and standard deviation is the mean of 8 samples per condition. Temp, temperature.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2991349&req=5

pone-0014104-g001: Effect of varying conditions on biofilm formation of the three Sulfolobus strains in microtitre plates.S. acidocaldarius (first row), S. tokodaii (second row) and S. solfataricus (third row) were incubated at different temperatures (first column), pH values (second column), iron concentrations (third column) and a combination of different iron concentrations and pH values (fourth column). The graphs show the correlation of the measured cristal violet absorbance of attached cells (OD570 nm) and the growth of the planktonic cells (OD600 nm) to emphasize the amount of cells in a sessile lifestyle at the tested condition. Each point and standard deviation is the mean of 8 samples per condition. Temp, temperature.
Mentions: To enable rapid quantification of surface-attached biomass, we adapted the commonly used microtitre plate assay based on crystal violet binding [23] for use at high temperatures. To prevent evaporation of the medium it was essential to cover the plates with gas permeable sealing membranes. For incubation at 76°C the plates were placed into a metal container to further prevent evaporation of the medium. The requirements for adherence to abiotic surfaces can vary greatly among microorganisms, therefore, different plates with hydrophilic and hydrophobic surfaces were tested. All three strains, S. acidocaldarius, S. solfataricus and S. tokodaii, attached preferentially to hydrophilic surfaces at the well's walls (data not shown). The conditions for biofilm formation were further optimized for each of the strains. The amount of biomass detected after two days was strongly dependent on the starting OD600 of the inoculum and differed for each strain (Fig. S1). Based on these results, for all subsequent experiments the starting OD for S. acidocaldarius was 0.01, for S. solfataricus was 0.03 and for S. solfataricus was 0.06. It was confirmed that the crystal violet values reflected the amount of biomass formed, as the obtained values correlated with the OD values measured from resuspended biofilm cells (data not shown). For the presentation of the microtitre plate assay results we show the correlation of the crystal violet release of the biofilm cells (OD570 nm) divided by the growth of the planktonic cells (OD600 nm) to emphasize the fraction of the cells which grow as biofilm under each condition in Fig. 1 and the absolute amount of surface-associated cells in Fig. S2.

Bottom Line: However, only limited information is available for the development of archaeal communities that are frequently found in many natural environments.While flagella mutants had no phenotype in two days old static biofilms of S. solfataricus, a UV-induced pili deletion mutant showed decreased attachment of cells.The study gives first insights into formation and development of crenarchaeal biofilms in extreme environments.

View Article: PubMed Central - PubMed

Affiliation: Molecular Biology of Archaea, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.

ABSTRACT

Background: Biofilm formation has been studied in much detail for a variety of bacterial species, as it plays a major role in the pathogenicity of bacteria. However, only limited information is available for the development of archaeal communities that are frequently found in many natural environments.

Methodology: We have analyzed biofilm formation in three closely related hyperthermophilic crenarchaeotes: Sulfolobus acidocaldarius, S. solfataricus and S. tokodaii. We established a microtitre plate assay adapted to high temperatures to determine how pH and temperature influence biofilm formation in these organisms. Biofilm analysis by confocal laser scanning microscopy demonstrated that the three strains form very different communities ranging from simple carpet-like structures in S. solfataricus to high density tower-like structures in S. acidocaldarius in static systems. Lectin staining indicated that all three strains produced extracellular polysaccharides containing glucose, galactose, mannose and N-acetylglucosamine once biofilm formation was initiated. While flagella mutants had no phenotype in two days old static biofilms of S. solfataricus, a UV-induced pili deletion mutant showed decreased attachment of cells.

Conclusion: The study gives first insights into formation and development of crenarchaeal biofilms in extreme environments.

Show MeSH