Limits...
Biocompatible Polyhydroxyethylaspartamide-based Micelles with Gadolinium for MRI Contrast Agents.

Jeong SY, Kim HJ, Kwak BK, Lee HY, Seong H, Shin BC, Yuk SH, Hwang SJ, Cho SH - Nanoscale Res Lett (2010)

Bottom Line: All the synthesized materials were characterized by proton nuclear magnetic resonance ((1)H NMR).Micelles with PHEA-mPEG-C(16)-ED-DOTA-Gd showed higher relaxivities than the commercially available gadolinium contrast agent.Moreover, the signal intensity of a rabbit liver was effectively increased after intravenous injection of PHEA-mPEG-C(16)-ED-DOTA-Gd.

View Article: PubMed Central - HTML - PubMed

ABSTRACT
Biocompatible poly-[N-(2-hydroxyethyl)-d,l-aspartamide]-methoxypoly(ethyleneglycol)-hexadecylamine (PHEA-mPEG-C(16)) conjugated with 1,4,7,10-tetraazacyclododecan-1,4,7,10-tetraacetic acid-gadolinium (DOTA-Gd) via ethylenediamine (ED) was synthesized as a magnetic resonance imaging (MRI) contrast agent. Amphiphilic PHEA-mPEG-C(16)-ED-DOTA-Gd forms micelle in aqueous solution. All the synthesized materials were characterized by proton nuclear magnetic resonance ((1)H NMR). Micelle size and shape were examined by dynamic light scattering (DLS) and atomic force microscopy (AFM). Micelles with PHEA-mPEG-C(16)-ED-DOTA-Gd showed higher relaxivities than the commercially available gadolinium contrast agent. Moreover, the signal intensity of a rabbit liver was effectively increased after intravenous injection of PHEA-mPEG-C(16)-ED-DOTA-Gd.

No MeSH data available.


T1-weighted MR image of rabbit liver a before injection, b 5 min after injection, c 10 min after injection, d 20 min after injection, and e 30 min after injection of PHEA-mPEG-C16-ED-DOTA-Gd
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2991228&req=5

Figure 5: T1-weighted MR image of rabbit liver a before injection, b 5 min after injection, c 10 min after injection, d 20 min after injection, and e 30 min after injection of PHEA-mPEG-C16-ED-DOTA-Gd

Mentions: Figure 5 shows the T1-weighted MRI images of a rabbit before and at various time points after injection of the contrast agent prepared with PHEA-mPEG-C16-ED-DOTA-Gd. This result showed a profound positive enhancement of the liver after injection of PHEA-mPEG-C16-ED-DOTA-Gd. We confirmed that the prepared PHEA-mPEG-C16-ED-DOTA-Gd contrast agent remarkably enhanced the normal liver on T1-weighted MR image. The signal intensity was started increasing 5 min after injection and gradually increased up to 10 min. The signal intensity of blood vessels gradually decreased over time, but significant contrast enhancement was still visible 30 min after injection. The result indicates that PHEA-mPEG-C16-ED-DOTA-Gd can be used as good contrast agent in lower concentration of Gd and imaged for a long time or at request. Additionally, PHEA-mPEG-C16-ED-DOTA-Gd complex seems to be used as blood pool contrast agent due to high signal intensity of blood vessel 30 min after intravenous administration. Electron microscopic observation of the hepatic Kupffer cells showed that phagocytosis of PHEA-mPEG-C16-ED-DOTA-Gd by lysosomes was much greater compared to that of Omniscan®.


Biocompatible Polyhydroxyethylaspartamide-based Micelles with Gadolinium for MRI Contrast Agents.

Jeong SY, Kim HJ, Kwak BK, Lee HY, Seong H, Shin BC, Yuk SH, Hwang SJ, Cho SH - Nanoscale Res Lett (2010)

T1-weighted MR image of rabbit liver a before injection, b 5 min after injection, c 10 min after injection, d 20 min after injection, and e 30 min after injection of PHEA-mPEG-C16-ED-DOTA-Gd
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2991228&req=5

Figure 5: T1-weighted MR image of rabbit liver a before injection, b 5 min after injection, c 10 min after injection, d 20 min after injection, and e 30 min after injection of PHEA-mPEG-C16-ED-DOTA-Gd
Mentions: Figure 5 shows the T1-weighted MRI images of a rabbit before and at various time points after injection of the contrast agent prepared with PHEA-mPEG-C16-ED-DOTA-Gd. This result showed a profound positive enhancement of the liver after injection of PHEA-mPEG-C16-ED-DOTA-Gd. We confirmed that the prepared PHEA-mPEG-C16-ED-DOTA-Gd contrast agent remarkably enhanced the normal liver on T1-weighted MR image. The signal intensity was started increasing 5 min after injection and gradually increased up to 10 min. The signal intensity of blood vessels gradually decreased over time, but significant contrast enhancement was still visible 30 min after injection. The result indicates that PHEA-mPEG-C16-ED-DOTA-Gd can be used as good contrast agent in lower concentration of Gd and imaged for a long time or at request. Additionally, PHEA-mPEG-C16-ED-DOTA-Gd complex seems to be used as blood pool contrast agent due to high signal intensity of blood vessel 30 min after intravenous administration. Electron microscopic observation of the hepatic Kupffer cells showed that phagocytosis of PHEA-mPEG-C16-ED-DOTA-Gd by lysosomes was much greater compared to that of Omniscan®.

Bottom Line: All the synthesized materials were characterized by proton nuclear magnetic resonance ((1)H NMR).Micelles with PHEA-mPEG-C(16)-ED-DOTA-Gd showed higher relaxivities than the commercially available gadolinium contrast agent.Moreover, the signal intensity of a rabbit liver was effectively increased after intravenous injection of PHEA-mPEG-C(16)-ED-DOTA-Gd.

View Article: PubMed Central - HTML - PubMed

ABSTRACT
Biocompatible poly-[N-(2-hydroxyethyl)-d,l-aspartamide]-methoxypoly(ethyleneglycol)-hexadecylamine (PHEA-mPEG-C(16)) conjugated with 1,4,7,10-tetraazacyclododecan-1,4,7,10-tetraacetic acid-gadolinium (DOTA-Gd) via ethylenediamine (ED) was synthesized as a magnetic resonance imaging (MRI) contrast agent. Amphiphilic PHEA-mPEG-C(16)-ED-DOTA-Gd forms micelle in aqueous solution. All the synthesized materials were characterized by proton nuclear magnetic resonance ((1)H NMR). Micelle size and shape were examined by dynamic light scattering (DLS) and atomic force microscopy (AFM). Micelles with PHEA-mPEG-C(16)-ED-DOTA-Gd showed higher relaxivities than the commercially available gadolinium contrast agent. Moreover, the signal intensity of a rabbit liver was effectively increased after intravenous injection of PHEA-mPEG-C(16)-ED-DOTA-Gd.

No MeSH data available.