Limits...
Highly Efficient Near-IR Photoluminescence of Er Immobilized in Mesoporous SBA-15.

Xue YL, Wu P, Liu Y, Zhang X, Lin L, Jiang Q - Nanoscale Res Lett (2010)

Bottom Line: It is a 29.3% boost in fluorescent cross section compared to what has been obtained in conventional silica.The upconversion coefficient in Yb-Er-SBA-15 is relatively small compared to that in other ordinary glass hosts.The increased fluorescent cross section and lowered upconversion coefficient could benefit for the high-gain optical amplifier.

View Article: PubMed Central - HTML - PubMed

ABSTRACT
SiO(2) mesoporous molecular sieve SBA-15 with the incorporation of erbium ions is studied as a novel type of nanoscopic composite photoluminescent material in this paper. To enhance the photoluminescence efficiency, two schemes have been used for the incorporation of Er(3+) where (1) Er(3+) is ligated with bis-(perfluoromethylsulfonyl)-aminate (PMS) forming Er(PMS)(x)-SBA-15 and (2) Yb(3+) is codoped with Er(3+) forming Yb-Er-SBA-15. As high as 11.17 × 10(-21)cm(2) of fluorescent cross section at 1534 nm and 88 nm of "effective bandwidth" have been gained. It is a 29.3% boost in fluorescent cross section compared to what has been obtained in conventional silica. The upconversion coefficient in Yb-Er-SBA-15 is relatively small compared to that in other ordinary glass hosts. The increased fluorescent cross section and lowered upconversion coefficient could benefit for the high-gain optical amplifier. Finally, the Judd-Ofelt theory has also been used for the analyses of the optical spectra of Er(PMS)(x)-SBA-15.

No MeSH data available.


N2 adsorption–desorption isotherms and pore size distributions (1) SBA-15; (2) Er-SBA-15
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2991226&req=5

Figure 4: N2 adsorption–desorption isotherms and pore size distributions (1) SBA-15; (2) Er-SBA-15

Mentions: Figure 4 displays the N2 adsorption–desorption isotherms and pore diameter distributions of SBA-15 before and after the inclusion of Er3+ ions. Both of them show typical reversible type IV isotherms with H1-type hysteresis loop, characteristic of ordered mesoporous materials according to the IUPAC classification [11]. Measurement of the isotherms revealed a lower nitrogen uptake for Er-SBA-15 compared with SBA-15, with the specific surface area calculated with the BET method reduced from 704 to 464 m2/g, pore volume reduced from 0.96 to 0.52 cm3/g, and pore diameter calculated with the BJH method reduced from 8.3 to 7.5 nm. The reduction in these parameters arises from the inclusion, dispersion, and anchoring of Er3+ ions in the SBA-15 pores. As shown in Fig. 1, the Er species are incorporated in the mesopores probably through the chemical bonding with the silanols. These species occupy the spaces of the pores and make they partially blocked. This then reasonably leads to much smaller values of the surface area, pore volume and pore size for Er-SBA-15 in comparison with the parent SBA-15.


Highly Efficient Near-IR Photoluminescence of Er Immobilized in Mesoporous SBA-15.

Xue YL, Wu P, Liu Y, Zhang X, Lin L, Jiang Q - Nanoscale Res Lett (2010)

N2 adsorption–desorption isotherms and pore size distributions (1) SBA-15; (2) Er-SBA-15
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2991226&req=5

Figure 4: N2 adsorption–desorption isotherms and pore size distributions (1) SBA-15; (2) Er-SBA-15
Mentions: Figure 4 displays the N2 adsorption–desorption isotherms and pore diameter distributions of SBA-15 before and after the inclusion of Er3+ ions. Both of them show typical reversible type IV isotherms with H1-type hysteresis loop, characteristic of ordered mesoporous materials according to the IUPAC classification [11]. Measurement of the isotherms revealed a lower nitrogen uptake for Er-SBA-15 compared with SBA-15, with the specific surface area calculated with the BET method reduced from 704 to 464 m2/g, pore volume reduced from 0.96 to 0.52 cm3/g, and pore diameter calculated with the BJH method reduced from 8.3 to 7.5 nm. The reduction in these parameters arises from the inclusion, dispersion, and anchoring of Er3+ ions in the SBA-15 pores. As shown in Fig. 1, the Er species are incorporated in the mesopores probably through the chemical bonding with the silanols. These species occupy the spaces of the pores and make they partially blocked. This then reasonably leads to much smaller values of the surface area, pore volume and pore size for Er-SBA-15 in comparison with the parent SBA-15.

Bottom Line: It is a 29.3% boost in fluorescent cross section compared to what has been obtained in conventional silica.The upconversion coefficient in Yb-Er-SBA-15 is relatively small compared to that in other ordinary glass hosts.The increased fluorescent cross section and lowered upconversion coefficient could benefit for the high-gain optical amplifier.

View Article: PubMed Central - HTML - PubMed

ABSTRACT
SiO(2) mesoporous molecular sieve SBA-15 with the incorporation of erbium ions is studied as a novel type of nanoscopic composite photoluminescent material in this paper. To enhance the photoluminescence efficiency, two schemes have been used for the incorporation of Er(3+) where (1) Er(3+) is ligated with bis-(perfluoromethylsulfonyl)-aminate (PMS) forming Er(PMS)(x)-SBA-15 and (2) Yb(3+) is codoped with Er(3+) forming Yb-Er-SBA-15. As high as 11.17 × 10(-21)cm(2) of fluorescent cross section at 1534 nm and 88 nm of "effective bandwidth" have been gained. It is a 29.3% boost in fluorescent cross section compared to what has been obtained in conventional silica. The upconversion coefficient in Yb-Er-SBA-15 is relatively small compared to that in other ordinary glass hosts. The increased fluorescent cross section and lowered upconversion coefficient could benefit for the high-gain optical amplifier. Finally, the Judd-Ofelt theory has also been used for the analyses of the optical spectra of Er(PMS)(x)-SBA-15.

No MeSH data available.