Limits...
Highly Efficient Near-IR Photoluminescence of Er Immobilized in Mesoporous SBA-15.

Xue YL, Wu P, Liu Y, Zhang X, Lin L, Jiang Q - Nanoscale Res Lett (2010)

Bottom Line: It is a 29.3% boost in fluorescent cross section compared to what has been obtained in conventional silica.The upconversion coefficient in Yb-Er-SBA-15 is relatively small compared to that in other ordinary glass hosts.The increased fluorescent cross section and lowered upconversion coefficient could benefit for the high-gain optical amplifier.

View Article: PubMed Central - HTML - PubMed

ABSTRACT
SiO(2) mesoporous molecular sieve SBA-15 with the incorporation of erbium ions is studied as a novel type of nanoscopic composite photoluminescent material in this paper. To enhance the photoluminescence efficiency, two schemes have been used for the incorporation of Er(3+) where (1) Er(3+) is ligated with bis-(perfluoromethylsulfonyl)-aminate (PMS) forming Er(PMS)(x)-SBA-15 and (2) Yb(3+) is codoped with Er(3+) forming Yb-Er-SBA-15. As high as 11.17 × 10(-21)cm(2) of fluorescent cross section at 1534 nm and 88 nm of "effective bandwidth" have been gained. It is a 29.3% boost in fluorescent cross section compared to what has been obtained in conventional silica. The upconversion coefficient in Yb-Er-SBA-15 is relatively small compared to that in other ordinary glass hosts. The increased fluorescent cross section and lowered upconversion coefficient could benefit for the high-gain optical amplifier. Finally, the Judd-Ofelt theory has also been used for the analyses of the optical spectra of Er(PMS)(x)-SBA-15.

No MeSH data available.


Powder XRD patterns of (1) SBA-15, (2) Er-SBA-15, and (3) Er(PMS)X-SBA-15
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2991226&req=5

Figure 2: Powder XRD patterns of (1) SBA-15, (2) Er-SBA-15, and (3) Er(PMS)X-SBA-15

Mentions: Figure 2 shows the powder XRD patterns for SBA-15 starting material, Er-SBA-15 and Er(PMS)x-SBA-15. The unmodified SBA-15 sample exhibits three diffraction in the 2θ range 2–3o, indexed for a hexagonal cell as (100), (110), (200). Upon inclusion of Er3+ ions, the characteristic diffractions are still observed at about the same positions with similar intensities, demonstrating that the long-term hexagonal symmetry of the mesopores is preserved. After the subsequent functionalization of Er-SBA-15 complex with PMS, inapparent shift toward a larger angle indicates shrinkage of the unit cell parameter due to a slight dehydroxylation, but the hexagonal symmetry of the mesopores is still preserved. The attenuation of the X-ray peaks, especially after the functionalization forming the bulky Er3+ complex, is not interpreted as a loss of long-range order but rather to a reduction in the X-ray scattering contrast between the silica walls and pore-filling materials.


Highly Efficient Near-IR Photoluminescence of Er Immobilized in Mesoporous SBA-15.

Xue YL, Wu P, Liu Y, Zhang X, Lin L, Jiang Q - Nanoscale Res Lett (2010)

Powder XRD patterns of (1) SBA-15, (2) Er-SBA-15, and (3) Er(PMS)X-SBA-15
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2991226&req=5

Figure 2: Powder XRD patterns of (1) SBA-15, (2) Er-SBA-15, and (3) Er(PMS)X-SBA-15
Mentions: Figure 2 shows the powder XRD patterns for SBA-15 starting material, Er-SBA-15 and Er(PMS)x-SBA-15. The unmodified SBA-15 sample exhibits three diffraction in the 2θ range 2–3o, indexed for a hexagonal cell as (100), (110), (200). Upon inclusion of Er3+ ions, the characteristic diffractions are still observed at about the same positions with similar intensities, demonstrating that the long-term hexagonal symmetry of the mesopores is preserved. After the subsequent functionalization of Er-SBA-15 complex with PMS, inapparent shift toward a larger angle indicates shrinkage of the unit cell parameter due to a slight dehydroxylation, but the hexagonal symmetry of the mesopores is still preserved. The attenuation of the X-ray peaks, especially after the functionalization forming the bulky Er3+ complex, is not interpreted as a loss of long-range order but rather to a reduction in the X-ray scattering contrast between the silica walls and pore-filling materials.

Bottom Line: It is a 29.3% boost in fluorescent cross section compared to what has been obtained in conventional silica.The upconversion coefficient in Yb-Er-SBA-15 is relatively small compared to that in other ordinary glass hosts.The increased fluorescent cross section and lowered upconversion coefficient could benefit for the high-gain optical amplifier.

View Article: PubMed Central - HTML - PubMed

ABSTRACT
SiO(2) mesoporous molecular sieve SBA-15 with the incorporation of erbium ions is studied as a novel type of nanoscopic composite photoluminescent material in this paper. To enhance the photoluminescence efficiency, two schemes have been used for the incorporation of Er(3+) where (1) Er(3+) is ligated with bis-(perfluoromethylsulfonyl)-aminate (PMS) forming Er(PMS)(x)-SBA-15 and (2) Yb(3+) is codoped with Er(3+) forming Yb-Er-SBA-15. As high as 11.17 × 10(-21)cm(2) of fluorescent cross section at 1534 nm and 88 nm of "effective bandwidth" have been gained. It is a 29.3% boost in fluorescent cross section compared to what has been obtained in conventional silica. The upconversion coefficient in Yb-Er-SBA-15 is relatively small compared to that in other ordinary glass hosts. The increased fluorescent cross section and lowered upconversion coefficient could benefit for the high-gain optical amplifier. Finally, the Judd-Ofelt theory has also been used for the analyses of the optical spectra of Er(PMS)(x)-SBA-15.

No MeSH data available.