Limits...
Spatio-temporal expression of a novel neuron-derived neurotrophic factor (NDNF) in mouse brains during development.

Kuang XL, Zhao XM, Xu HF, Shi YY, Deng JB, Sun GT - BMC Neurosci (2010)

Bottom Line: Cajal-Retzius cells, cortex neurons, hippocampus neurons, olfactory mitral cells, cerebellar purkinje cells, cerebellar granular cells and spinal neurons were found to be NDNF-positive.NDNF expression was observed in the neurons during development.The results of this study indicated that NDNF is a novel neurotrophic factor derived from neurons that may be useful in the treatment of neuronal degeneration diseases and nerve injuries.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Biochemistry and Molecular Biology, Institute of Molecular Medicine, Medical School, Henan University, KaiFeng, PR China.

ABSTRACT

Background: Neuron-derived neurotrophic factor (NDNF) is evolutionarily well conserved, being present in invertebrate animals such as the nematode, Caenorhabditis elegans, as well as in the fruit fly, Drosophila melanogaster. Multiple cysteines are conserved between species and secondary structure prediction shows that NDNF is mainly composed of beta-strands. In this study, we aimed to investigate the function of NDNF.

Results: NDNF is a glycosylated, disulfide-bonded secretory protein that contains a fibronectin type III domain. NDNF promoted migration and growth and elicited neurite outgrowth of mouse hippocampal neurons in culture. NDNF also protected cultured hippocampal neurons against excitotoxicity and amyloid beta-peptide toxicity. Western blotting showed that NDNF was exclusively expressed in the brain and spinal cord. Immunostaining indicated that NDNF was expressed by neurons and not by astrocytes. Cajal-Retzius cells, cortex neurons, hippocampus neurons, olfactory mitral cells, cerebellar purkinje cells, cerebellar granular cells and spinal neurons were found to be NDNF-positive. NDNF expression was observed in the neurons during development.

Conclusions: The results of this study indicated that NDNF is a novel neurotrophic factor derived from neurons that may be useful in the treatment of neuronal degeneration diseases and nerve injuries.

Show MeSH

Related in: MedlinePlus

Expression of NDNF in the mouse brain. A. Cerebral cortex; B. Cerebellar cortex; C. Olfactory bulb. ML, molecular layer; PCL, purkinje cell layer; GCL, granule cell layer; ECL, external plexiform layer; MCL, mitral cell layer. Scale bars: 50 um.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2984559&req=5

Figure 7: Expression of NDNF in the mouse brain. A. Cerebral cortex; B. Cerebellar cortex; C. Olfactory bulb. ML, molecular layer; PCL, purkinje cell layer; GCL, granule cell layer; ECL, external plexiform layer; MCL, mitral cell layer. Scale bars: 50 um.

Mentions: Clear immunofluorescence was detected in the cerebrum, cerebellum, and olfactory bulbs (Figure 7). In the cerebral cortex, NDNF was highly expressed in the marginal zone, representing the Cajal-Retzius cells. In addition, NDNF was expressed in other neurons under the marginal zone of the cortex with less abundance. The hippocampal neurons also expressed NDNF, but the fluorescence is not strong as in the cortex. In the cerebellum, both Purkinje cells and granule cells showed specific staining with NDNF antibody, while the former had stronger signals. NDNF also appeared in the olfactory mitral cells.


Spatio-temporal expression of a novel neuron-derived neurotrophic factor (NDNF) in mouse brains during development.

Kuang XL, Zhao XM, Xu HF, Shi YY, Deng JB, Sun GT - BMC Neurosci (2010)

Expression of NDNF in the mouse brain. A. Cerebral cortex; B. Cerebellar cortex; C. Olfactory bulb. ML, molecular layer; PCL, purkinje cell layer; GCL, granule cell layer; ECL, external plexiform layer; MCL, mitral cell layer. Scale bars: 50 um.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2984559&req=5

Figure 7: Expression of NDNF in the mouse brain. A. Cerebral cortex; B. Cerebellar cortex; C. Olfactory bulb. ML, molecular layer; PCL, purkinje cell layer; GCL, granule cell layer; ECL, external plexiform layer; MCL, mitral cell layer. Scale bars: 50 um.
Mentions: Clear immunofluorescence was detected in the cerebrum, cerebellum, and olfactory bulbs (Figure 7). In the cerebral cortex, NDNF was highly expressed in the marginal zone, representing the Cajal-Retzius cells. In addition, NDNF was expressed in other neurons under the marginal zone of the cortex with less abundance. The hippocampal neurons also expressed NDNF, but the fluorescence is not strong as in the cortex. In the cerebellum, both Purkinje cells and granule cells showed specific staining with NDNF antibody, while the former had stronger signals. NDNF also appeared in the olfactory mitral cells.

Bottom Line: Cajal-Retzius cells, cortex neurons, hippocampus neurons, olfactory mitral cells, cerebellar purkinje cells, cerebellar granular cells and spinal neurons were found to be NDNF-positive.NDNF expression was observed in the neurons during development.The results of this study indicated that NDNF is a novel neurotrophic factor derived from neurons that may be useful in the treatment of neuronal degeneration diseases and nerve injuries.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Biochemistry and Molecular Biology, Institute of Molecular Medicine, Medical School, Henan University, KaiFeng, PR China.

ABSTRACT

Background: Neuron-derived neurotrophic factor (NDNF) is evolutionarily well conserved, being present in invertebrate animals such as the nematode, Caenorhabditis elegans, as well as in the fruit fly, Drosophila melanogaster. Multiple cysteines are conserved between species and secondary structure prediction shows that NDNF is mainly composed of beta-strands. In this study, we aimed to investigate the function of NDNF.

Results: NDNF is a glycosylated, disulfide-bonded secretory protein that contains a fibronectin type III domain. NDNF promoted migration and growth and elicited neurite outgrowth of mouse hippocampal neurons in culture. NDNF also protected cultured hippocampal neurons against excitotoxicity and amyloid beta-peptide toxicity. Western blotting showed that NDNF was exclusively expressed in the brain and spinal cord. Immunostaining indicated that NDNF was expressed by neurons and not by astrocytes. Cajal-Retzius cells, cortex neurons, hippocampus neurons, olfactory mitral cells, cerebellar purkinje cells, cerebellar granular cells and spinal neurons were found to be NDNF-positive. NDNF expression was observed in the neurons during development.

Conclusions: The results of this study indicated that NDNF is a novel neurotrophic factor derived from neurons that may be useful in the treatment of neuronal degeneration diseases and nerve injuries.

Show MeSH
Related in: MedlinePlus