Limits...
Molecular mechanisms of tiling and self-avoidance in neural development.

Cameron S, Rao Y - Mol Brain (2010)

Bottom Line: Dscams and Turtle (Tutl), two Ig superfamily proteins, have been shown to mediate contact-dependent homotypic interactions in tiling and self-avoidance.By contrast, the Activin pathway regulates axonal tiling in a contact-independent manner.These cell surface signals may directly or indirectly regulate the activity of the Tricornered kinase pathway and/or other intracellular signaling pathways to prevent the overlap between same-type neuronal arbors in the sensory or synaptic input field.

View Article: PubMed Central - HTML - PubMed

Affiliation: McGill Centre for Research in Neuroscience, McGill University Health Centre, 1650 Cedar Avenue, Montreal, Quebec H3G 1A4, Canada.

ABSTRACT
Recent studies have begun to unravel the molecular basis of tiling and self-avoidance, two important cellular mechanisms that shape neuronal circuitry during development in both invertebrates and vertebrates. Dscams and Turtle (Tutl), two Ig superfamily proteins, have been shown to mediate contact-dependent homotypic interactions in tiling and self-avoidance. By contrast, the Activin pathway regulates axonal tiling in a contact-independent manner. These cell surface signals may directly or indirectly regulate the activity of the Tricornered kinase pathway and/or other intracellular signaling pathways to prevent the overlap between same-type neuronal arbors in the sensory or synaptic input field.

Show MeSH
The function of the Trc signaling pathway in tiling and self-avoidance. Unidentified cell surface signals activate Hpo and TOR, which in turn up-regulate the activity of the Trc and Fry complex. Trc may then modulate the activity of certain cytoskeletal regulators to control the growth of neuronal arbors. PM, plasma membrane.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2959082&req=5

Figure 5: The function of the Trc signaling pathway in tiling and self-avoidance. Unidentified cell surface signals activate Hpo and TOR, which in turn up-regulate the activity of the Trc and Fry complex. Trc may then modulate the activity of certain cytoskeletal regulators to control the growth of neuronal arbors. PM, plasma membrane.

Mentions: Recent genetic dissection of dendritic patterning in Drosophila da neurons has led to the identification of several components of the Tricornerd kinase pathway in dendritic tiling and self-avoidance (Fig. 5), including the Tricornered (Trc) Ser/Thr kinase [22], its activator Furry (Fry) [22], upstream regulators such as Ste20-like Ser/Thr kinase Hippo (Hpo) [50] and the target of rapamycin (TOR) Ser/Thr kinase [51].


Molecular mechanisms of tiling and self-avoidance in neural development.

Cameron S, Rao Y - Mol Brain (2010)

The function of the Trc signaling pathway in tiling and self-avoidance. Unidentified cell surface signals activate Hpo and TOR, which in turn up-regulate the activity of the Trc and Fry complex. Trc may then modulate the activity of certain cytoskeletal regulators to control the growth of neuronal arbors. PM, plasma membrane.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2959082&req=5

Figure 5: The function of the Trc signaling pathway in tiling and self-avoidance. Unidentified cell surface signals activate Hpo and TOR, which in turn up-regulate the activity of the Trc and Fry complex. Trc may then modulate the activity of certain cytoskeletal regulators to control the growth of neuronal arbors. PM, plasma membrane.
Mentions: Recent genetic dissection of dendritic patterning in Drosophila da neurons has led to the identification of several components of the Tricornerd kinase pathway in dendritic tiling and self-avoidance (Fig. 5), including the Tricornered (Trc) Ser/Thr kinase [22], its activator Furry (Fry) [22], upstream regulators such as Ste20-like Ser/Thr kinase Hippo (Hpo) [50] and the target of rapamycin (TOR) Ser/Thr kinase [51].

Bottom Line: Dscams and Turtle (Tutl), two Ig superfamily proteins, have been shown to mediate contact-dependent homotypic interactions in tiling and self-avoidance.By contrast, the Activin pathway regulates axonal tiling in a contact-independent manner.These cell surface signals may directly or indirectly regulate the activity of the Tricornered kinase pathway and/or other intracellular signaling pathways to prevent the overlap between same-type neuronal arbors in the sensory or synaptic input field.

View Article: PubMed Central - HTML - PubMed

Affiliation: McGill Centre for Research in Neuroscience, McGill University Health Centre, 1650 Cedar Avenue, Montreal, Quebec H3G 1A4, Canada.

ABSTRACT
Recent studies have begun to unravel the molecular basis of tiling and self-avoidance, two important cellular mechanisms that shape neuronal circuitry during development in both invertebrates and vertebrates. Dscams and Turtle (Tutl), two Ig superfamily proteins, have been shown to mediate contact-dependent homotypic interactions in tiling and self-avoidance. By contrast, the Activin pathway regulates axonal tiling in a contact-independent manner. These cell surface signals may directly or indirectly regulate the activity of the Tricornered kinase pathway and/or other intracellular signaling pathways to prevent the overlap between same-type neuronal arbors in the sensory or synaptic input field.

Show MeSH