Limits...
Prediction of global left ventricular functional recovery in patients with heart failure undergoing surgical revascularisation, based on late gadolinium enhancement cardiovascular magnetic resonance.

Pegg TJ, Selvanayagam JB, Jennifer J, Francis JM, Karamitsos TD, Dall'Armellina E, Smith KL, Taggart DP, Neubauer S - J Cardiovasc Magn Reson (2010)

Bottom Line: Mean LVEF 38% ± 11, which improved to 43% ± 12 after surgery. 21/33 patients improved EF by ≥3% (EF before 38% ± 13, after 47% ± 13), 12/33 did not (EF before 39% ± 6, after 37% ± 8).Based on a 50% transmural viability cutoff, patients with ≥10 viable+normal segments improve global LV function post revascularisation, while patients with fewer such segments do not.LGE-CMR is a simple and powerful tool for identifying which patients with impaired LV function will benefit from CABG.

View Article: PubMed Central - HTML - PubMed

Affiliation: University of Oxford Centre for Clinical Magnetic Resonance Research, UK.

ABSTRACT

Background: The new gold standard for myocardial viability assessment is late gadolinium enhancement-cardiovascular magnetic resonance (LGE-CMR); this technique has demonstrated that the transmural extent of scar predicts segmental functional recovery. We now asked how the number of viable and number of viable+normal, segments predicted recovery of global left ventricular (LV) function in patients undergoing CABG. Finally, we examined which segmental transmural threshold of scarring best predicted global LV recovery.

Methods and results: Fifty patients with reduced LV ejection fraction (EF) referred for CABG were recruited, and 33 included in this analysis. Patients underwent CMR to assess LV function and viability pre-operatively at 6 days and 6 months. Mean LVEF 38% ± 11, which improved to 43% ± 12 after surgery. 21/33 patients improved EF by ≥3% (EF before 38% ± 13, after 47% ± 13), 12/33 did not (EF before 39% ± 6, after 37% ± 8). The only independent predictor for global functional recovery after revascularisation was the number of viable+normal segments: Based on a segmental transmural viability cutoff of <50%, ROC analysis demonstrated ≥10 viable+normal segments predicted ≥3% improvement in LVEF with a sensitivity of 95% and specificity of 75% (AUC = 0.9, p < 0.001). Transmural viability cutoffs of <25 and <75% and a cutoff of ≥4 viable segments were less useful predictors of global LV recovery.

Conclusions: Based on a 50% transmural viability cutoff, patients with ≥10 viable+normal segments improve global LV function post revascularisation, while patients with fewer such segments do not. LGE-CMR is a simple and powerful tool for identifying which patients with impaired LV function will benefit from CABG.

Trial registration: Research Ethics Committee Unique Identifier: NRES:05/Q1603/42. The study is listed on the Current Controlled Trials Registry: ISRCTN41388968.URL: http://www.controlled-trials.com.

Show MeSH

Related in: MedlinePlus

ROC analysis for the threshold of viable segments that predict global functional recovery. Legend shows various transmural extent of LGE. Optimal diagnostic performance was achieved with ≥10 viable+normal segments (segments affected by <50% LGE).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2959056&req=5

Figure 5: ROC analysis for the threshold of viable segments that predict global functional recovery. Legend shows various transmural extent of LGE. Optimal diagnostic performance was achieved with ≥10 viable+normal segments (segments affected by <50% LGE).

Mentions: ROC analysis was used to best define a threshold for number of viable+normal segments and also the transmural extent of LGE within each segment that had the optimal sensitivity and specificity for predicting global functional recovery (Figure 5). For improvement in LVEF, 10 or more viable+normal segments (LGE <50%) demonstrated the optimal sensitivity of 95% and specificity of 75%. Furthermore, both the positive and negative predictive values were high (87% and 89% respectively) (AUC 0.90 p < 0.001, Figure 5). A transmural extent of LGE <50% was the best threshold to define segmental viability for the purpose of predicting global recovery, while other transmural cutoff thresholds were less powerful.


Prediction of global left ventricular functional recovery in patients with heart failure undergoing surgical revascularisation, based on late gadolinium enhancement cardiovascular magnetic resonance.

Pegg TJ, Selvanayagam JB, Jennifer J, Francis JM, Karamitsos TD, Dall'Armellina E, Smith KL, Taggart DP, Neubauer S - J Cardiovasc Magn Reson (2010)

ROC analysis for the threshold of viable segments that predict global functional recovery. Legend shows various transmural extent of LGE. Optimal diagnostic performance was achieved with ≥10 viable+normal segments (segments affected by <50% LGE).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2959056&req=5

Figure 5: ROC analysis for the threshold of viable segments that predict global functional recovery. Legend shows various transmural extent of LGE. Optimal diagnostic performance was achieved with ≥10 viable+normal segments (segments affected by <50% LGE).
Mentions: ROC analysis was used to best define a threshold for number of viable+normal segments and also the transmural extent of LGE within each segment that had the optimal sensitivity and specificity for predicting global functional recovery (Figure 5). For improvement in LVEF, 10 or more viable+normal segments (LGE <50%) demonstrated the optimal sensitivity of 95% and specificity of 75%. Furthermore, both the positive and negative predictive values were high (87% and 89% respectively) (AUC 0.90 p < 0.001, Figure 5). A transmural extent of LGE <50% was the best threshold to define segmental viability for the purpose of predicting global recovery, while other transmural cutoff thresholds were less powerful.

Bottom Line: Mean LVEF 38% ± 11, which improved to 43% ± 12 after surgery. 21/33 patients improved EF by ≥3% (EF before 38% ± 13, after 47% ± 13), 12/33 did not (EF before 39% ± 6, after 37% ± 8).Based on a 50% transmural viability cutoff, patients with ≥10 viable+normal segments improve global LV function post revascularisation, while patients with fewer such segments do not.LGE-CMR is a simple and powerful tool for identifying which patients with impaired LV function will benefit from CABG.

View Article: PubMed Central - HTML - PubMed

Affiliation: University of Oxford Centre for Clinical Magnetic Resonance Research, UK.

ABSTRACT

Background: The new gold standard for myocardial viability assessment is late gadolinium enhancement-cardiovascular magnetic resonance (LGE-CMR); this technique has demonstrated that the transmural extent of scar predicts segmental functional recovery. We now asked how the number of viable and number of viable+normal, segments predicted recovery of global left ventricular (LV) function in patients undergoing CABG. Finally, we examined which segmental transmural threshold of scarring best predicted global LV recovery.

Methods and results: Fifty patients with reduced LV ejection fraction (EF) referred for CABG were recruited, and 33 included in this analysis. Patients underwent CMR to assess LV function and viability pre-operatively at 6 days and 6 months. Mean LVEF 38% ± 11, which improved to 43% ± 12 after surgery. 21/33 patients improved EF by ≥3% (EF before 38% ± 13, after 47% ± 13), 12/33 did not (EF before 39% ± 6, after 37% ± 8). The only independent predictor for global functional recovery after revascularisation was the number of viable+normal segments: Based on a segmental transmural viability cutoff of <50%, ROC analysis demonstrated ≥10 viable+normal segments predicted ≥3% improvement in LVEF with a sensitivity of 95% and specificity of 75% (AUC = 0.9, p < 0.001). Transmural viability cutoffs of <25 and <75% and a cutoff of ≥4 viable segments were less useful predictors of global LV recovery.

Conclusions: Based on a 50% transmural viability cutoff, patients with ≥10 viable+normal segments improve global LV function post revascularisation, while patients with fewer such segments do not. LGE-CMR is a simple and powerful tool for identifying which patients with impaired LV function will benefit from CABG.

Trial registration: Research Ethics Committee Unique Identifier: NRES:05/Q1603/42. The study is listed on the Current Controlled Trials Registry: ISRCTN41388968.URL: http://www.controlled-trials.com.

Show MeSH
Related in: MedlinePlus