Limits...
Changes in deceleration capacity of heart rate and heart rate variability induced by ambient air pollution in individuals with coronary artery disease.

Schneider A, Hampel R, Ibald-Mulli A, Zareba W, Schmidt G, Schneider R, Rückerl R, Couderc JP, Mykins B, Oberdörster G, Wölke G, Pitz M, Wichmann HE, Peters A - Part Fibre Toxicol (2010)

Bottom Line: The long-term recordings revealed decreased RMSSD and pNN50 (% of adjacent NN intervals that differed more than 50 ms) in association with EC and OC 24-47 hours prior to the recordings.In addition, highly significant effects were found for DC which decreased in association with PM2.5, EC and OC concurrent with the ECG recordings as well as with a lag of up to 47 hours.An air pollution-related decrease in parasympathetic tone as well as impaired heart rate deceleration capacity may contribute to an increased risk for cardiac morbidity and sudden cardiac death in vulnerable populations.

View Article: PubMed Central - HTML - PubMed

Affiliation: Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Epidemiology, Neuherberg, Germany. alexandra.schneider@helmholtz-muenchen.de

ABSTRACT

Background and objective: Exposure to ambient particles has been shown to be responsible for cardiovascular effects, especially in elderly with cardiovascular disease. The study assessed the association between deceleration capacity (DC) as well as heart rate variability (HRV) and ambient particulate matter (PM) in patients with coronary artery disease (CAD).

Methods: A prospective study with up to 12 repeated measurements was conducted in Erfurt, Germany, between October 2000 and April 2001 in 56 patients with physician-diagnosed ischemic heart disease, stable angina pectoris or prior myocardial infarction at an age of at least 50 years. Twenty-minute ECG recordings were obtained every two weeks and 24-hour ECG recordings every four weeks. Exposure to PM (size range from 10 nm to 2.5 μm), and elemental (EC) and organic (OC) carbon was measured. Additive mixed models were used to analyze the association between PM and ECG recordings.

Results: The short-term recordings showed decrements in the high-frequency component of HRV as well as in RMSSD (root-mean-square of successive differences of NN intervals) in association with increments in EC and OC 0-23 hours prior to the recordings. The long-term recordings revealed decreased RMSSD and pNN50 (% of adjacent NN intervals that differed more than 50 ms) in association with EC and OC 24-47 hours prior to the recordings. In addition, highly significant effects were found for DC which decreased in association with PM2.5, EC and OC concurrent with the ECG recordings as well as with a lag of up to 47 hours.

Conclusions: The analysis showed significant effects of ambient particulate air pollution on DC and HRV parameters reflecting parasympathetic modulation of the heart in patients with CAD. An air pollution-related decrease in parasympathetic tone as well as impaired heart rate deceleration capacity may contribute to an increased risk for cardiac morbidity and sudden cardiac death in vulnerable populations.

Show MeSH

Related in: MedlinePlus

Effect estimates (with 95%-confidence intervals) of OC and EC for 24-hour moving averages on deceleration capacity and heart rate variability parameters of the 24-hour recordings per interquartile range increase in the respective pollutant.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2958976&req=5

Figure 2: Effect estimates (with 95%-confidence intervals) of OC and EC for 24-hour moving averages on deceleration capacity and heart rate variability parameters of the 24-hour recordings per interquartile range increase in the respective pollutant.

Mentions: Results of the 24-hour ECG recordings in association with 24-hour mean particulate air pollutants are given in Table 4. RMSSD decreased in association with increasing EC and OC averages during the 24-47 hours before the ECG recording. In the same time-frame pNN50 showed even stronger decreases - also with EC and OC. In addition, DC decreased consistently in association with concurrent PM2.5, EC and OC averages as well as with lag 0 and lag 1 (Figure 2). DC-effects were highly significant and most consistent over different time-lags. No effects were found for HR or SDNN or in association with UFP.


Changes in deceleration capacity of heart rate and heart rate variability induced by ambient air pollution in individuals with coronary artery disease.

Schneider A, Hampel R, Ibald-Mulli A, Zareba W, Schmidt G, Schneider R, Rückerl R, Couderc JP, Mykins B, Oberdörster G, Wölke G, Pitz M, Wichmann HE, Peters A - Part Fibre Toxicol (2010)

Effect estimates (with 95%-confidence intervals) of OC and EC for 24-hour moving averages on deceleration capacity and heart rate variability parameters of the 24-hour recordings per interquartile range increase in the respective pollutant.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2958976&req=5

Figure 2: Effect estimates (with 95%-confidence intervals) of OC and EC for 24-hour moving averages on deceleration capacity and heart rate variability parameters of the 24-hour recordings per interquartile range increase in the respective pollutant.
Mentions: Results of the 24-hour ECG recordings in association with 24-hour mean particulate air pollutants are given in Table 4. RMSSD decreased in association with increasing EC and OC averages during the 24-47 hours before the ECG recording. In the same time-frame pNN50 showed even stronger decreases - also with EC and OC. In addition, DC decreased consistently in association with concurrent PM2.5, EC and OC averages as well as with lag 0 and lag 1 (Figure 2). DC-effects were highly significant and most consistent over different time-lags. No effects were found for HR or SDNN or in association with UFP.

Bottom Line: The long-term recordings revealed decreased RMSSD and pNN50 (% of adjacent NN intervals that differed more than 50 ms) in association with EC and OC 24-47 hours prior to the recordings.In addition, highly significant effects were found for DC which decreased in association with PM2.5, EC and OC concurrent with the ECG recordings as well as with a lag of up to 47 hours.An air pollution-related decrease in parasympathetic tone as well as impaired heart rate deceleration capacity may contribute to an increased risk for cardiac morbidity and sudden cardiac death in vulnerable populations.

View Article: PubMed Central - HTML - PubMed

Affiliation: Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Epidemiology, Neuherberg, Germany. alexandra.schneider@helmholtz-muenchen.de

ABSTRACT

Background and objective: Exposure to ambient particles has been shown to be responsible for cardiovascular effects, especially in elderly with cardiovascular disease. The study assessed the association between deceleration capacity (DC) as well as heart rate variability (HRV) and ambient particulate matter (PM) in patients with coronary artery disease (CAD).

Methods: A prospective study with up to 12 repeated measurements was conducted in Erfurt, Germany, between October 2000 and April 2001 in 56 patients with physician-diagnosed ischemic heart disease, stable angina pectoris or prior myocardial infarction at an age of at least 50 years. Twenty-minute ECG recordings were obtained every two weeks and 24-hour ECG recordings every four weeks. Exposure to PM (size range from 10 nm to 2.5 μm), and elemental (EC) and organic (OC) carbon was measured. Additive mixed models were used to analyze the association between PM and ECG recordings.

Results: The short-term recordings showed decrements in the high-frequency component of HRV as well as in RMSSD (root-mean-square of successive differences of NN intervals) in association with increments in EC and OC 0-23 hours prior to the recordings. The long-term recordings revealed decreased RMSSD and pNN50 (% of adjacent NN intervals that differed more than 50 ms) in association with EC and OC 24-47 hours prior to the recordings. In addition, highly significant effects were found for DC which decreased in association with PM2.5, EC and OC concurrent with the ECG recordings as well as with a lag of up to 47 hours.

Conclusions: The analysis showed significant effects of ambient particulate air pollution on DC and HRV parameters reflecting parasympathetic modulation of the heart in patients with CAD. An air pollution-related decrease in parasympathetic tone as well as impaired heart rate deceleration capacity may contribute to an increased risk for cardiac morbidity and sudden cardiac death in vulnerable populations.

Show MeSH
Related in: MedlinePlus