Limits...
Measurement of Epstein-Barr virus DNA load using a novel quantification standard containing two EBV DNA targets and SYBR Green I dye.

Lay ML, Lucas RM, Ratnamohan M, Taylor J, Ponsonby AL, Dwyer DE, Ausimmune Investigator Group (AI - Virol. J. (2010)

Bottom Line: Two separate real-time quantitative polymerase chain reaction (QPCR) assays using SYBR Green I dye and a single quantification standard containing two EBV genes, Epstein-Barr nuclear antigen-1 (EBNA-1) and BamHI fragment H rightward open reading frame-1 (BHRF-1), were developed to detect and measure absolute EBV DNA load in patients with various EBV-associated diseases.EBV DNA loads were detectable from 8.0 × 10(2) to 1.3 × 10(8) copies/ml in post-transplant lymphoproliferative disease (n = 5), 1.5 × 10(3) to 2.0 × 10(5) copies/ml in infectious mononucleosis (n = 7), 7.5 × 10(4) to 1.1 × 10(5) copies/ml in EBV-associated haemophagocytic syndrome (n = 1), 2.0 × 10(2) to 5.6 × 10(3) copies/ml in HIV-infected patients (n = 12), and 2.0 × 10(2) to 9.1 × 10(4) copies/ml in the population sample (n = 218).These assays have application in the investigation of EBV-related illnesses in immunocompromised individuals.

View Article: PubMed Central - HTML - PubMed

Affiliation: Virology Department, Centre For Infectious Diseases & Microbiology Laboratory Services, Institute of Clinical Pathology & Medical Research, Institute Road, Westmead Hospital, Westmead 2145, New South Wales, Australia. mlay4697@uni.sydney.edu.au

ABSTRACT

Background: Reactivation of Epstein-Barr virus (EBV) infection may cause serious, life-threatening complications in immunocompromised individuals. EBV DNA is often detected in EBV-associated disease states, with viral load believed to be a reflection of virus activity. Two separate real-time quantitative polymerase chain reaction (QPCR) assays using SYBR Green I dye and a single quantification standard containing two EBV genes, Epstein-Barr nuclear antigen-1 (EBNA-1) and BamHI fragment H rightward open reading frame-1 (BHRF-1), were developed to detect and measure absolute EBV DNA load in patients with various EBV-associated diseases. EBV DNA loads and viral capsid antigen (VCA) IgG antibody titres were also quantified on a population sample.

Results: EBV DNA was measurable in ethylenediaminetetraacetic acid (EDTA) whole blood, peripheral blood mononuclear cells (PBMCs), plasma and cerebrospinal fluid (CSF) samples. EBV DNA loads were detectable from 8.0 × 10(2) to 1.3 × 10(8) copies/ml in post-transplant lymphoproliferative disease (n = 5), 1.5 × 10(3) to 2.0 × 10(5) copies/ml in infectious mononucleosis (n = 7), 7.5 × 10(4) to 1.1 × 10(5) copies/ml in EBV-associated haemophagocytic syndrome (n = 1), 2.0 × 10(2) to 5.6 × 10(3) copies/ml in HIV-infected patients (n = 12), and 2.0 × 10(2) to 9.1 × 10(4) copies/ml in the population sample (n = 218). EBNA-1 and BHRF-1 DNA were detected in 11.0% and 21.6% of the population sample respectively. There was a modest correlation between VCA IgG antibody titre and BHRF-1 DNA load (rho = 0.13, p = 0.05) but not EBNA-1 DNA load (rho = 0.11, p = 0.11).

Conclusion: Two sensitive and specific real-time PCR assays using SYBR Green I dye and a single quantification standard containing two EBV DNA targets, were developed for the detection and measurement of EBV DNA load in a variety of clinical samples. These assays have application in the investigation of EBV-related illnesses in immunocompromised individuals.

Show MeSH

Related in: MedlinePlus

Plasmid vector pGEM showing location of cloned insert.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2958162&req=5

Figure 1: Plasmid vector pGEM showing location of cloned insert.

Mentions: A novel feature of the assay was the design of a quantification standard incorporating both EBNA-1 and BHRF-1 DNA targets in a single plasmid (Figure 1). This was done to minimise the necessity for two separate EBV standards, thus reducing costs and labour. The EBNA-1 and BHRF-1 DNA targets were linked using randomised primers (Table 1) and inserted into the pGEM vector, using the pGEM®-T Easy Vector System II (Promega Corporation, Alexandria, NSW, Australia) according to the manufacturer's instructions. The cloned targets were then purified using the PureYield™ Plasmid MidiPrep System (Promega Corporation, Alexandria, NSW, Australia), and stored in single use aliquots. Target copy number was calculated following double stranded DNA approximation using the Beckman DU® 530 Life Science UV/Vis spectrophotometer (Beckman Coulter, Gladesville, NSW, Australia). A new plasmid aliquot was used for standard curve dilution for each PCR run consisting of three replicates starting at 101 to 106 copies/5 μl. PCR runs were accepted when the standard curve correlation co-efficient was ≥ 0.99.


Measurement of Epstein-Barr virus DNA load using a novel quantification standard containing two EBV DNA targets and SYBR Green I dye.

Lay ML, Lucas RM, Ratnamohan M, Taylor J, Ponsonby AL, Dwyer DE, Ausimmune Investigator Group (AI - Virol. J. (2010)

Plasmid vector pGEM showing location of cloned insert.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2958162&req=5

Figure 1: Plasmid vector pGEM showing location of cloned insert.
Mentions: A novel feature of the assay was the design of a quantification standard incorporating both EBNA-1 and BHRF-1 DNA targets in a single plasmid (Figure 1). This was done to minimise the necessity for two separate EBV standards, thus reducing costs and labour. The EBNA-1 and BHRF-1 DNA targets were linked using randomised primers (Table 1) and inserted into the pGEM vector, using the pGEM®-T Easy Vector System II (Promega Corporation, Alexandria, NSW, Australia) according to the manufacturer's instructions. The cloned targets were then purified using the PureYield™ Plasmid MidiPrep System (Promega Corporation, Alexandria, NSW, Australia), and stored in single use aliquots. Target copy number was calculated following double stranded DNA approximation using the Beckman DU® 530 Life Science UV/Vis spectrophotometer (Beckman Coulter, Gladesville, NSW, Australia). A new plasmid aliquot was used for standard curve dilution for each PCR run consisting of three replicates starting at 101 to 106 copies/5 μl. PCR runs were accepted when the standard curve correlation co-efficient was ≥ 0.99.

Bottom Line: Two separate real-time quantitative polymerase chain reaction (QPCR) assays using SYBR Green I dye and a single quantification standard containing two EBV genes, Epstein-Barr nuclear antigen-1 (EBNA-1) and BamHI fragment H rightward open reading frame-1 (BHRF-1), were developed to detect and measure absolute EBV DNA load in patients with various EBV-associated diseases.EBV DNA loads were detectable from 8.0 × 10(2) to 1.3 × 10(8) copies/ml in post-transplant lymphoproliferative disease (n = 5), 1.5 × 10(3) to 2.0 × 10(5) copies/ml in infectious mononucleosis (n = 7), 7.5 × 10(4) to 1.1 × 10(5) copies/ml in EBV-associated haemophagocytic syndrome (n = 1), 2.0 × 10(2) to 5.6 × 10(3) copies/ml in HIV-infected patients (n = 12), and 2.0 × 10(2) to 9.1 × 10(4) copies/ml in the population sample (n = 218).These assays have application in the investigation of EBV-related illnesses in immunocompromised individuals.

View Article: PubMed Central - HTML - PubMed

Affiliation: Virology Department, Centre For Infectious Diseases & Microbiology Laboratory Services, Institute of Clinical Pathology & Medical Research, Institute Road, Westmead Hospital, Westmead 2145, New South Wales, Australia. mlay4697@uni.sydney.edu.au

ABSTRACT

Background: Reactivation of Epstein-Barr virus (EBV) infection may cause serious, life-threatening complications in immunocompromised individuals. EBV DNA is often detected in EBV-associated disease states, with viral load believed to be a reflection of virus activity. Two separate real-time quantitative polymerase chain reaction (QPCR) assays using SYBR Green I dye and a single quantification standard containing two EBV genes, Epstein-Barr nuclear antigen-1 (EBNA-1) and BamHI fragment H rightward open reading frame-1 (BHRF-1), were developed to detect and measure absolute EBV DNA load in patients with various EBV-associated diseases. EBV DNA loads and viral capsid antigen (VCA) IgG antibody titres were also quantified on a population sample.

Results: EBV DNA was measurable in ethylenediaminetetraacetic acid (EDTA) whole blood, peripheral blood mononuclear cells (PBMCs), plasma and cerebrospinal fluid (CSF) samples. EBV DNA loads were detectable from 8.0 × 10(2) to 1.3 × 10(8) copies/ml in post-transplant lymphoproliferative disease (n = 5), 1.5 × 10(3) to 2.0 × 10(5) copies/ml in infectious mononucleosis (n = 7), 7.5 × 10(4) to 1.1 × 10(5) copies/ml in EBV-associated haemophagocytic syndrome (n = 1), 2.0 × 10(2) to 5.6 × 10(3) copies/ml in HIV-infected patients (n = 12), and 2.0 × 10(2) to 9.1 × 10(4) copies/ml in the population sample (n = 218). EBNA-1 and BHRF-1 DNA were detected in 11.0% and 21.6% of the population sample respectively. There was a modest correlation between VCA IgG antibody titre and BHRF-1 DNA load (rho = 0.13, p = 0.05) but not EBNA-1 DNA load (rho = 0.11, p = 0.11).

Conclusion: Two sensitive and specific real-time PCR assays using SYBR Green I dye and a single quantification standard containing two EBV DNA targets, were developed for the detection and measurement of EBV DNA load in a variety of clinical samples. These assays have application in the investigation of EBV-related illnesses in immunocompromised individuals.

Show MeSH
Related in: MedlinePlus