Limits...
Sleep restriction for 1 week reduces insulin sensitivity in healthy men.

Buxton OM, Pavlova M, Reid EW, Wang W, Simonson DC, Adler GK - Diabetes (2010)

Bottom Line: Short sleep duration is associated with impaired glucose tolerance and an increased risk of diabetes.These outcomes were not affected by modafinil treatment.Sleep restriction (5 h/night) for 1 week significantly reduces insulin sensitivity, raising concerns about effects of chronic insufficient sleep on disease processes associated with insulin resistance.

View Article: PubMed Central - PubMed

Affiliation: Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA. orfeu_buxton@hms.harvard.edu

ABSTRACT

Objective: Short sleep duration is associated with impaired glucose tolerance and an increased risk of diabetes. The effects of sleep restriction on insulin sensitivity have not been established. This study tests the hypothesis that decreasing nighttime sleep duration reduces insulin sensitivity and assesses the effects of a drug, modafinil, that increases alertness during wakefulness.

Research design and methods: This 12-day inpatient General Clinical Research Center study included 20 healthy men (age 20-35 years and BMI 20-30 kg/m(2)). Subjects spent 10 h/night in bed for >or=8 nights including three inpatient nights (sleep-replete condition), followed by 5 h/night in bed for 7 nights (sleep-restricted condition). Subjects received 300 mg/day modafinil or placebo during sleep restriction. Diet and activity were controlled. On the last 2 days of each condition, we assessed glucose metabolism by intravenous glucose tolerance test (IVGTT) and euglycemic-hyperinsulinemic clamp. Salivary cortisol, 24-h urinary catecholamines, and neurobehavioral performance were measured.

Results: IVGTT-derived insulin sensitivity was reduced by (means +/- SD) 20 +/- 24% after sleep restriction (P = 0.001), without significant alterations in the insulin secretory response. Similarly, insulin sensitivity assessed by clamp was reduced by 11 +/- 5.5% (P < 0.04) after sleep restriction. Glucose tolerance and the disposition index were reduced by sleep restriction. These outcomes were not affected by modafinil treatment. Changes in insulin sensitivity did not correlate with changes in salivary cortisol (increase of 51 +/- 8% with sleep restriction, P < 0.02), urinary catecholamines, or slow wave sleep.

Conclusions: Sleep restriction (5 h/night) for 1 week significantly reduces insulin sensitivity, raising concerns about effects of chronic insufficient sleep on disease processes associated with insulin resistance.

Show MeSH

Related in: MedlinePlus

Effects of sleep restriction on glucose metabolism. A and B: Mean glucose levels (± SE) from IVGTT during the baseline sleep-replete condition (10 h/night TIB [black line]) and following sleep restriction for 1 week (5 h/night TIB) in subjects receiving placebo (A) (red line) modafinil (B) (green line). Left arrow, glucose infusion at time = 0 min; right arrow, insulin infusion at time = 20 min. C and D: Mean insulin levels (± SE) from IVGTT. E–H: IVGTT parameters were calculated using Minmod Millennium software. Glucose and insulin data from insulin-modified IVGTT procedures under sleep-replete (filled symbols) and sleep-restricted conditions (open symbols) are shown. E: Acute insulin response (AIRg) (first phase). F: Disposition index. G: SI from IVGTT. H: relative changes in SI from IVGTT expressed as percent change from baseline sleep-replete condition in subjects randomized to placebo (red circles) or modafinil administration (green triangles). I: Insulin sensitivity (M) from euglycemic-hyperinsulinemic clamp procedure. J: Relative changes in insulin sensitivity (M) depicted as in F. There were no significant effects of drug administration on any metabolic parameters (Table 1).
© Copyright Policy - creative-commons
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2927933&req=5

Figure 4: Effects of sleep restriction on glucose metabolism. A and B: Mean glucose levels (± SE) from IVGTT during the baseline sleep-replete condition (10 h/night TIB [black line]) and following sleep restriction for 1 week (5 h/night TIB) in subjects receiving placebo (A) (red line) modafinil (B) (green line). Left arrow, glucose infusion at time = 0 min; right arrow, insulin infusion at time = 20 min. C and D: Mean insulin levels (± SE) from IVGTT. E–H: IVGTT parameters were calculated using Minmod Millennium software. Glucose and insulin data from insulin-modified IVGTT procedures under sleep-replete (filled symbols) and sleep-restricted conditions (open symbols) are shown. E: Acute insulin response (AIRg) (first phase). F: Disposition index. G: SI from IVGTT. H: relative changes in SI from IVGTT expressed as percent change from baseline sleep-replete condition in subjects randomized to placebo (red circles) or modafinil administration (green triangles). I: Insulin sensitivity (M) from euglycemic-hyperinsulinemic clamp procedure. J: Relative changes in insulin sensitivity (M) depicted as in F. There were no significant effects of drug administration on any metabolic parameters (Table 1).

Mentions: Insulin sensitivity assessed by minimal model analysis of IVGTT data was significantly reduced after sleep restriction compared with the sleep-replete baseline condition, with no significant effect of modafinil treatment (Table 1; Fig. 4E). Fifteen out of nineteen subjects had a decrease in SI with sleep restriction, with a mean decrease of 20 ± 24% (F1,18 = 15.18; P = 0.001) (Table 1 and Fig. 4E and F). The acute insulin response was not significantly affected by either sleep restriction or drug treatment (Table 1; Fig. 4C). With sleep restriction, the disposition index (the product of SI and acute insulin response), was significantly but slightly reduced (Table 1 and Fig. 4D) and glucose tolerance was significantly reduced (change of 0.31 ± 0.13% per min with modafinil and 0.17 ± 0.15% per min with placebo). There were no significant effects of sleep restriction or drug treatment on other minimal model parameters (Table 1).


Sleep restriction for 1 week reduces insulin sensitivity in healthy men.

Buxton OM, Pavlova M, Reid EW, Wang W, Simonson DC, Adler GK - Diabetes (2010)

Effects of sleep restriction on glucose metabolism. A and B: Mean glucose levels (± SE) from IVGTT during the baseline sleep-replete condition (10 h/night TIB [black line]) and following sleep restriction for 1 week (5 h/night TIB) in subjects receiving placebo (A) (red line) modafinil (B) (green line). Left arrow, glucose infusion at time = 0 min; right arrow, insulin infusion at time = 20 min. C and D: Mean insulin levels (± SE) from IVGTT. E–H: IVGTT parameters were calculated using Minmod Millennium software. Glucose and insulin data from insulin-modified IVGTT procedures under sleep-replete (filled symbols) and sleep-restricted conditions (open symbols) are shown. E: Acute insulin response (AIRg) (first phase). F: Disposition index. G: SI from IVGTT. H: relative changes in SI from IVGTT expressed as percent change from baseline sleep-replete condition in subjects randomized to placebo (red circles) or modafinil administration (green triangles). I: Insulin sensitivity (M) from euglycemic-hyperinsulinemic clamp procedure. J: Relative changes in insulin sensitivity (M) depicted as in F. There were no significant effects of drug administration on any metabolic parameters (Table 1).
© Copyright Policy - creative-commons
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2927933&req=5

Figure 4: Effects of sleep restriction on glucose metabolism. A and B: Mean glucose levels (± SE) from IVGTT during the baseline sleep-replete condition (10 h/night TIB [black line]) and following sleep restriction for 1 week (5 h/night TIB) in subjects receiving placebo (A) (red line) modafinil (B) (green line). Left arrow, glucose infusion at time = 0 min; right arrow, insulin infusion at time = 20 min. C and D: Mean insulin levels (± SE) from IVGTT. E–H: IVGTT parameters were calculated using Minmod Millennium software. Glucose and insulin data from insulin-modified IVGTT procedures under sleep-replete (filled symbols) and sleep-restricted conditions (open symbols) are shown. E: Acute insulin response (AIRg) (first phase). F: Disposition index. G: SI from IVGTT. H: relative changes in SI from IVGTT expressed as percent change from baseline sleep-replete condition in subjects randomized to placebo (red circles) or modafinil administration (green triangles). I: Insulin sensitivity (M) from euglycemic-hyperinsulinemic clamp procedure. J: Relative changes in insulin sensitivity (M) depicted as in F. There were no significant effects of drug administration on any metabolic parameters (Table 1).
Mentions: Insulin sensitivity assessed by minimal model analysis of IVGTT data was significantly reduced after sleep restriction compared with the sleep-replete baseline condition, with no significant effect of modafinil treatment (Table 1; Fig. 4E). Fifteen out of nineteen subjects had a decrease in SI with sleep restriction, with a mean decrease of 20 ± 24% (F1,18 = 15.18; P = 0.001) (Table 1 and Fig. 4E and F). The acute insulin response was not significantly affected by either sleep restriction or drug treatment (Table 1; Fig. 4C). With sleep restriction, the disposition index (the product of SI and acute insulin response), was significantly but slightly reduced (Table 1 and Fig. 4D) and glucose tolerance was significantly reduced (change of 0.31 ± 0.13% per min with modafinil and 0.17 ± 0.15% per min with placebo). There were no significant effects of sleep restriction or drug treatment on other minimal model parameters (Table 1).

Bottom Line: Short sleep duration is associated with impaired glucose tolerance and an increased risk of diabetes.These outcomes were not affected by modafinil treatment.Sleep restriction (5 h/night) for 1 week significantly reduces insulin sensitivity, raising concerns about effects of chronic insufficient sleep on disease processes associated with insulin resistance.

View Article: PubMed Central - PubMed

Affiliation: Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA. orfeu_buxton@hms.harvard.edu

ABSTRACT

Objective: Short sleep duration is associated with impaired glucose tolerance and an increased risk of diabetes. The effects of sleep restriction on insulin sensitivity have not been established. This study tests the hypothesis that decreasing nighttime sleep duration reduces insulin sensitivity and assesses the effects of a drug, modafinil, that increases alertness during wakefulness.

Research design and methods: This 12-day inpatient General Clinical Research Center study included 20 healthy men (age 20-35 years and BMI 20-30 kg/m(2)). Subjects spent 10 h/night in bed for >or=8 nights including three inpatient nights (sleep-replete condition), followed by 5 h/night in bed for 7 nights (sleep-restricted condition). Subjects received 300 mg/day modafinil or placebo during sleep restriction. Diet and activity were controlled. On the last 2 days of each condition, we assessed glucose metabolism by intravenous glucose tolerance test (IVGTT) and euglycemic-hyperinsulinemic clamp. Salivary cortisol, 24-h urinary catecholamines, and neurobehavioral performance were measured.

Results: IVGTT-derived insulin sensitivity was reduced by (means +/- SD) 20 +/- 24% after sleep restriction (P = 0.001), without significant alterations in the insulin secretory response. Similarly, insulin sensitivity assessed by clamp was reduced by 11 +/- 5.5% (P < 0.04) after sleep restriction. Glucose tolerance and the disposition index were reduced by sleep restriction. These outcomes were not affected by modafinil treatment. Changes in insulin sensitivity did not correlate with changes in salivary cortisol (increase of 51 +/- 8% with sleep restriction, P < 0.02), urinary catecholamines, or slow wave sleep.

Conclusions: Sleep restriction (5 h/night) for 1 week significantly reduces insulin sensitivity, raising concerns about effects of chronic insufficient sleep on disease processes associated with insulin resistance.

Show MeSH
Related in: MedlinePlus