Limits...
Marine biodiversity in the Caribbean: regional estimates and distribution patterns.

Miloslavich P, Díaz JM, Klein E, Alvarado JJ, Díaz C, Gobin J, Escobar-Briones E, Cruz-Motta JJ, Weil E, Cortés J, Bastidas AC, Robertson R, Zapata F, Martín A, Castillo J, Kazandjian A, Ortiz M - PLoS ONE (2010)

Bottom Line: Additionally, we found that the currently accepted classification of marine ecoregions of the Caribbean did not apply for the benthic distributions of five relatively well known taxonomic groups.Coastal species richness tends to concentrate along the Antillean arc (Cuba to the southernmost Antilles) and the northern coast of South America (Venezuela-Colombia), while no pattern can be observed in the deep sea with the available data.Several factors make it impossible to determine the extent to which these distribution patterns accurately reflect the true situation for marine biodiversity in general: (1) highly localized concentrations of collecting effort and a lack of collecting in many areas and ecosystems, (2) high variability among collecting methods, (3) limited taxonomic expertise for many groups, and (4) differing levels of activity in the study of different taxa.

View Article: PubMed Central - PubMed

Affiliation: Departamento de Estudios Ambientales, Universidad Simón Bolívar, Caracas, Venezuela. pmilos@usb.ve

ABSTRACT
This paper provides an analysis of the distribution patterns of marine biodiversity and summarizes the major activities of the Census of Marine Life program in the Caribbean region. The coastal Caribbean region is a large marine ecosystem (LME) characterized by coral reefs, mangroves, and seagrasses, but including other environments, such as sandy beaches and rocky shores. These tropical ecosystems incorporate a high diversity of associated flora and fauna, and the nations that border the Caribbean collectively encompass a major global marine biodiversity hot spot. We analyze the state of knowledge of marine biodiversity based on the geographic distribution of georeferenced species records and regional taxonomic lists. A total of 12,046 marine species are reported in this paper for the Caribbean region. These include representatives from 31 animal phyla, two plant phyla, one group of Chromista, and three groups of Protoctista. Sampling effort has been greatest in shallow, nearshore waters, where there is relatively good coverage of species records; offshore and deep environments have been less studied. Additionally, we found that the currently accepted classification of marine ecoregions of the Caribbean did not apply for the benthic distributions of five relatively well known taxonomic groups. Coastal species richness tends to concentrate along the Antillean arc (Cuba to the southernmost Antilles) and the northern coast of South America (Venezuela-Colombia), while no pattern can be observed in the deep sea with the available data. Several factors make it impossible to determine the extent to which these distribution patterns accurately reflect the true situation for marine biodiversity in general: (1) highly localized concentrations of collecting effort and a lack of collecting in many areas and ecosystems, (2) high variability among collecting methods, (3) limited taxonomic expertise for many groups, and (4) differing levels of activity in the study of different taxa.

Show MeSH

Related in: MedlinePlus

MDS for various taxa between the different Caribbean countries or subregions.SCar: Southern Caribbean (red), SWCar: Southwestern Caribbean (blue), ECar: Eastern Caribbean (green), GAnt: Greater Antilles (purple), WCar: Western Caribbean (orange).
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2914069&req=5

pone-0011916-g005: MDS for various taxa between the different Caribbean countries or subregions.SCar: Southern Caribbean (red), SWCar: Southwestern Caribbean (blue), ECar: Eastern Caribbean (green), GAnt: Greater Antilles (purple), WCar: Western Caribbean (orange).

Mentions: The species of sponges (Table S3), scleractinian corals (Table S4), polychaetes (Table S5), mollusks (Table S6), amphipod crustaceans (Table S7) and echinoderms (Table S8) were compiled for the different countries or subregions within the Caribbean. Spatial patterns of species diversity usually exhibit relatively definitive gradients or shift progressively in space, unless ecological factors change abruptly. We expected to find species composition to be more similar between countries within one ecoregion in relation to countries within a different ecoregion or with areas located farther apart, however, this was not observed (Figure 5). The MDS ordination of the species by country within ecoregions is very different from one taxonomic group to the other, and no signicant differences were found in species composition between ecoregions for any of the taxonomic groups. MDS stress values for the figures were very low (0.005–0.129), indicating that the 2-dimensional plots are a good representation of the data [61].The species composition of sponges throughout the Caribbean is relatively homogenous with the exception of Curacao, Puerto Rico, Virgin Islands, and Barbados. Barbados and the Virgin Islands are both from the Eastern Caribbean region, and despite being different in composition from the rest, they are also different from each other (Figure 5a). The same tendency of species homogeneity throughout the Caribbean can be observed for corals, with the exception of Trinidad and Tobago and Guatemala (Figure 5b). For mollusks, species composition was similar within several countries from the Greater Antilles ecoregion (with the exception of Hispaniola island), for the Western Caribbean, for the Southwestern Caribbean (with the exception of San Andres Island), and for the Southern Caribbean. The Eastern Caribbean was grouped closely with all of the ecoregions except for the Southern Caribbean (Figure 5c). In the case of amphipods, Cuba, Mexico, and Venezuela are closely grouped together which is probably an artifact due to the fact that these three countries are the best sampled in the Caribbean with extensive species list for amphipods (these countries list more than 130 amphipod species, while the rest list between 16 to 63 species only). For this group, species composition is relatively similar within the Western Caribbean ecoregion and within the Southwestern Caribbean ecoregion (Figure 5d). In the case of echinoderms, species composition was relatively similar within the Greater Antilles ecoregion, and within the Western Caribbean ecoregion (Figure 5e). In terms of absolute species richness by ecoregion, for these groups, the most speciose ecoregion was the Greater Antilles with 2781 species, followed by the Southwestern Caribbean with 2129, the Western Caribbean with 1664, the Southern Caribbean with 1615, and finally the Eastern Caribbean with 1441 species (Table 4). The Greater Antilles is also the most speciose region for sponges, corals, and mollusks, while amphipods were more diverse in the Southern Caribbean, and echinoderms in the Southwestern Caribbean. A very large proportion of the species in this compilation is from coastal shallow waters, therefore, coastal length was considered within each of the ecoregions. When the species richness is viewed in terms of species per 100 kilometers of coast, the situation is different: the Eastern Caribbean has the highest number of species per coastal length (109 species/100 km of coast), followed by the Western Caribbean (80), the Southwestern Caribbean (55), the Southern Caribbean (47), and finally the larger area, the Greater Antilles (33 species/100 km of coast) (Table 4). When looking in detail at biodiversity richness within each of the ecoregions, the Porifera are clearly more species rich (165–255 species) in Cuba, Belize, and Jamaica than elsewhere in the Caribbean. This group is significantly less diverse (40–85 species) in Hispaniola, Puerto Rico, and the Lesser Antilles, as well as along the Nicaraguan and Costa Rican coasts. Intermediate richness values (113–146 species) occur in Yucatan, southern Central American, and northern South American coasts, including the Leeward Antilles (Aruba, Bonaire, and Curacao, or ABC Islands, and Venezuelan offshore islands). The Cayman Islands have only 82 reported species, however, the Cayman Islands are small coral islands, and as measured by the number of sponge species per kilometer of coastline the Cayman Islands and the ABC Islands rank as the most species-diverse areas in the Caribbean (Table 4). With regard to zooxanthellated hard corals, species-rich areas (containing more than 70% of all Caribbean species) occur throughout the region, but Hispaniola and Venezuela clearly stand out with 63 and 68 species, respectively. On the contrary, Guatemala, Nicaragua, Costa Rica, and Trinidad and Tobago are less diverse areas. Again, considering the number of species per kilometer of coastline, the Cayman Islands and ABC Islands are by far the most species-diverse areas. On the other hand, azooxanthellate corals, most of which occur in deeper waters and have not been thoroughly surveyed in many areas, are apparently more diverse in Cuba, Jamaica, and Trinidad and Tobago.


Marine biodiversity in the Caribbean: regional estimates and distribution patterns.

Miloslavich P, Díaz JM, Klein E, Alvarado JJ, Díaz C, Gobin J, Escobar-Briones E, Cruz-Motta JJ, Weil E, Cortés J, Bastidas AC, Robertson R, Zapata F, Martín A, Castillo J, Kazandjian A, Ortiz M - PLoS ONE (2010)

MDS for various taxa between the different Caribbean countries or subregions.SCar: Southern Caribbean (red), SWCar: Southwestern Caribbean (blue), ECar: Eastern Caribbean (green), GAnt: Greater Antilles (purple), WCar: Western Caribbean (orange).
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2914069&req=5

pone-0011916-g005: MDS for various taxa between the different Caribbean countries or subregions.SCar: Southern Caribbean (red), SWCar: Southwestern Caribbean (blue), ECar: Eastern Caribbean (green), GAnt: Greater Antilles (purple), WCar: Western Caribbean (orange).
Mentions: The species of sponges (Table S3), scleractinian corals (Table S4), polychaetes (Table S5), mollusks (Table S6), amphipod crustaceans (Table S7) and echinoderms (Table S8) were compiled for the different countries or subregions within the Caribbean. Spatial patterns of species diversity usually exhibit relatively definitive gradients or shift progressively in space, unless ecological factors change abruptly. We expected to find species composition to be more similar between countries within one ecoregion in relation to countries within a different ecoregion or with areas located farther apart, however, this was not observed (Figure 5). The MDS ordination of the species by country within ecoregions is very different from one taxonomic group to the other, and no signicant differences were found in species composition between ecoregions for any of the taxonomic groups. MDS stress values for the figures were very low (0.005–0.129), indicating that the 2-dimensional plots are a good representation of the data [61].The species composition of sponges throughout the Caribbean is relatively homogenous with the exception of Curacao, Puerto Rico, Virgin Islands, and Barbados. Barbados and the Virgin Islands are both from the Eastern Caribbean region, and despite being different in composition from the rest, they are also different from each other (Figure 5a). The same tendency of species homogeneity throughout the Caribbean can be observed for corals, with the exception of Trinidad and Tobago and Guatemala (Figure 5b). For mollusks, species composition was similar within several countries from the Greater Antilles ecoregion (with the exception of Hispaniola island), for the Western Caribbean, for the Southwestern Caribbean (with the exception of San Andres Island), and for the Southern Caribbean. The Eastern Caribbean was grouped closely with all of the ecoregions except for the Southern Caribbean (Figure 5c). In the case of amphipods, Cuba, Mexico, and Venezuela are closely grouped together which is probably an artifact due to the fact that these three countries are the best sampled in the Caribbean with extensive species list for amphipods (these countries list more than 130 amphipod species, while the rest list between 16 to 63 species only). For this group, species composition is relatively similar within the Western Caribbean ecoregion and within the Southwestern Caribbean ecoregion (Figure 5d). In the case of echinoderms, species composition was relatively similar within the Greater Antilles ecoregion, and within the Western Caribbean ecoregion (Figure 5e). In terms of absolute species richness by ecoregion, for these groups, the most speciose ecoregion was the Greater Antilles with 2781 species, followed by the Southwestern Caribbean with 2129, the Western Caribbean with 1664, the Southern Caribbean with 1615, and finally the Eastern Caribbean with 1441 species (Table 4). The Greater Antilles is also the most speciose region for sponges, corals, and mollusks, while amphipods were more diverse in the Southern Caribbean, and echinoderms in the Southwestern Caribbean. A very large proportion of the species in this compilation is from coastal shallow waters, therefore, coastal length was considered within each of the ecoregions. When the species richness is viewed in terms of species per 100 kilometers of coast, the situation is different: the Eastern Caribbean has the highest number of species per coastal length (109 species/100 km of coast), followed by the Western Caribbean (80), the Southwestern Caribbean (55), the Southern Caribbean (47), and finally the larger area, the Greater Antilles (33 species/100 km of coast) (Table 4). When looking in detail at biodiversity richness within each of the ecoregions, the Porifera are clearly more species rich (165–255 species) in Cuba, Belize, and Jamaica than elsewhere in the Caribbean. This group is significantly less diverse (40–85 species) in Hispaniola, Puerto Rico, and the Lesser Antilles, as well as along the Nicaraguan and Costa Rican coasts. Intermediate richness values (113–146 species) occur in Yucatan, southern Central American, and northern South American coasts, including the Leeward Antilles (Aruba, Bonaire, and Curacao, or ABC Islands, and Venezuelan offshore islands). The Cayman Islands have only 82 reported species, however, the Cayman Islands are small coral islands, and as measured by the number of sponge species per kilometer of coastline the Cayman Islands and the ABC Islands rank as the most species-diverse areas in the Caribbean (Table 4). With regard to zooxanthellated hard corals, species-rich areas (containing more than 70% of all Caribbean species) occur throughout the region, but Hispaniola and Venezuela clearly stand out with 63 and 68 species, respectively. On the contrary, Guatemala, Nicaragua, Costa Rica, and Trinidad and Tobago are less diverse areas. Again, considering the number of species per kilometer of coastline, the Cayman Islands and ABC Islands are by far the most species-diverse areas. On the other hand, azooxanthellate corals, most of which occur in deeper waters and have not been thoroughly surveyed in many areas, are apparently more diverse in Cuba, Jamaica, and Trinidad and Tobago.

Bottom Line: Additionally, we found that the currently accepted classification of marine ecoregions of the Caribbean did not apply for the benthic distributions of five relatively well known taxonomic groups.Coastal species richness tends to concentrate along the Antillean arc (Cuba to the southernmost Antilles) and the northern coast of South America (Venezuela-Colombia), while no pattern can be observed in the deep sea with the available data.Several factors make it impossible to determine the extent to which these distribution patterns accurately reflect the true situation for marine biodiversity in general: (1) highly localized concentrations of collecting effort and a lack of collecting in many areas and ecosystems, (2) high variability among collecting methods, (3) limited taxonomic expertise for many groups, and (4) differing levels of activity in the study of different taxa.

View Article: PubMed Central - PubMed

Affiliation: Departamento de Estudios Ambientales, Universidad Simón Bolívar, Caracas, Venezuela. pmilos@usb.ve

ABSTRACT
This paper provides an analysis of the distribution patterns of marine biodiversity and summarizes the major activities of the Census of Marine Life program in the Caribbean region. The coastal Caribbean region is a large marine ecosystem (LME) characterized by coral reefs, mangroves, and seagrasses, but including other environments, such as sandy beaches and rocky shores. These tropical ecosystems incorporate a high diversity of associated flora and fauna, and the nations that border the Caribbean collectively encompass a major global marine biodiversity hot spot. We analyze the state of knowledge of marine biodiversity based on the geographic distribution of georeferenced species records and regional taxonomic lists. A total of 12,046 marine species are reported in this paper for the Caribbean region. These include representatives from 31 animal phyla, two plant phyla, one group of Chromista, and three groups of Protoctista. Sampling effort has been greatest in shallow, nearshore waters, where there is relatively good coverage of species records; offshore and deep environments have been less studied. Additionally, we found that the currently accepted classification of marine ecoregions of the Caribbean did not apply for the benthic distributions of five relatively well known taxonomic groups. Coastal species richness tends to concentrate along the Antillean arc (Cuba to the southernmost Antilles) and the northern coast of South America (Venezuela-Colombia), while no pattern can be observed in the deep sea with the available data. Several factors make it impossible to determine the extent to which these distribution patterns accurately reflect the true situation for marine biodiversity in general: (1) highly localized concentrations of collecting effort and a lack of collecting in many areas and ecosystems, (2) high variability among collecting methods, (3) limited taxonomic expertise for many groups, and (4) differing levels of activity in the study of different taxa.

Show MeSH
Related in: MedlinePlus