Limits...
An overview of marine biodiversity in United States waters.

Fautin D, Dalton P, Incze LS, Leong JA, Pautzke C, Rosenberg A, Sandifer P, Sedberry G, Tunnell JW, Abbott I, Brainard RE, Brodeur M, Eldredge LG, Feldman M, Moretzsohn F, Vroom PS, Wainstein M, Wolff N - PLoS ONE (2010)

Bottom Line: And all data must have a temporal component so trends can be identified.Information on biotic and abiotic elements of the environment must be interactively linked.Impediments to assembling existing data and collecting new data on marine biodiversity include logistical problems as well as shortages in finances and taxonomic expertise.

View Article: PubMed Central - PubMed

Affiliation: Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America. fautin@ku.edu

ABSTRACT
Marine biodiversity of the United States (U.S.) is extensively documented, but data assembled by the United States National Committee for the Census of Marine Life demonstrate that even the most complete taxonomic inventories are based on records scattered in space and time. The best-known taxa are those of commercial importance. Body size is directly correlated with knowledge of a species, and knowledge also diminishes with distance from shore and depth. Measures of biodiversity other than species diversity, such as ecosystem and genetic diversity, are poorly documented. Threats to marine biodiversity in the U.S. are the same as those for most of the world: overexploitation of living resources; reduced water quality; coastal development; shipping; invasive species; rising temperature and concentrations of carbon dioxide in the surface ocean, and other changes that may be consequences of global change, including shifting currents; increased number and size of hypoxic or anoxic areas; and increased number and duration of harmful algal blooms. More information must be obtained through field and laboratory research and monitoring that involve innovative sampling techniques (such as genetics and acoustics), but data that already exist must be made accessible. And all data must have a temporal component so trends can be identified. As data are compiled, techniques must be developed to make certain that scales are compatible, to combine and reconcile data collected for various purposes with disparate gear, and to automate taxonomic changes. Information on biotic and abiotic elements of the environment must be interactively linked. Impediments to assembling existing data and collecting new data on marine biodiversity include logistical problems as well as shortages in finances and taxonomic expertise.

Show MeSH

Related in: MedlinePlus

Bathymetric map of the Hawaiian Archipelago.Figure courtesy of [Rooney J, Wessel P, Hoeke R, Weiss J, Baker J, et al (2008) Geology and geomorphology of coral reefs in the northwestern Hawaiian Islands. In: Riegl BM, Dodge RE (eds). Coral Reefs of the USA. Springer, pp. 515-567]
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2914028&req=5

pone-0011914-g008: Bathymetric map of the Hawaiian Archipelago.Figure courtesy of [Rooney J, Wessel P, Hoeke R, Weiss J, Baker J, et al (2008) Geology and geomorphology of coral reefs in the northwestern Hawaiian Islands. In: Riegl BM, Dodge RE (eds). Coral Reefs of the USA. Springer, pp. 515-567]

Mentions: The Hawaiian Archipelago consists of eight high volcanic islands with offshore nonstructural reef communities and fringing reefs abutting the shore [154] at its southern end, and a series of small islands, atolls, shoals, seamounts, and banks stretching to Midway and Kure atolls at its northwestern end (Figure 7). Excluding Midway, which is an unincorporated territory of the U.S., the Hawaiian Islands form the U.S. stat of Hawaii. The eight Main Hawaiian Islands (MHI), which are home to 99% of the state's 1.3 million human residents, are separated from the southernmost area of the mostly uninhabited Northwestern Hawaiian Islands (NWHI) (Figure 8), which span more than 2,000 km, by 250 km of open ocean. The archipelago extends 2,500 km astride the Tropic of Cancer between 154°40′ and 178°25′ W, and 18°54′ and 28° 15′ N. Its total land area is approximately 16,642 km2. About 3,000 km from the nearest continent, it is the most isolated group of islands on earth. Undersea mapping is ongoing, including annual multibeam surveys. The forereef slopes, between 20 and 500 m, have been extensively surveyed, but large areas of the shallow reefs and some bank tops are still unmapped (Pacific Islands Benthic Habitat Mapping Center at http://www.soest.hawaii.edu/pibhmc/pibhmc_nwhi.htm).


An overview of marine biodiversity in United States waters.

Fautin D, Dalton P, Incze LS, Leong JA, Pautzke C, Rosenberg A, Sandifer P, Sedberry G, Tunnell JW, Abbott I, Brainard RE, Brodeur M, Eldredge LG, Feldman M, Moretzsohn F, Vroom PS, Wainstein M, Wolff N - PLoS ONE (2010)

Bathymetric map of the Hawaiian Archipelago.Figure courtesy of [Rooney J, Wessel P, Hoeke R, Weiss J, Baker J, et al (2008) Geology and geomorphology of coral reefs in the northwestern Hawaiian Islands. In: Riegl BM, Dodge RE (eds). Coral Reefs of the USA. Springer, pp. 515-567]
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2914028&req=5

pone-0011914-g008: Bathymetric map of the Hawaiian Archipelago.Figure courtesy of [Rooney J, Wessel P, Hoeke R, Weiss J, Baker J, et al (2008) Geology and geomorphology of coral reefs in the northwestern Hawaiian Islands. In: Riegl BM, Dodge RE (eds). Coral Reefs of the USA. Springer, pp. 515-567]
Mentions: The Hawaiian Archipelago consists of eight high volcanic islands with offshore nonstructural reef communities and fringing reefs abutting the shore [154] at its southern end, and a series of small islands, atolls, shoals, seamounts, and banks stretching to Midway and Kure atolls at its northwestern end (Figure 7). Excluding Midway, which is an unincorporated territory of the U.S., the Hawaiian Islands form the U.S. stat of Hawaii. The eight Main Hawaiian Islands (MHI), which are home to 99% of the state's 1.3 million human residents, are separated from the southernmost area of the mostly uninhabited Northwestern Hawaiian Islands (NWHI) (Figure 8), which span more than 2,000 km, by 250 km of open ocean. The archipelago extends 2,500 km astride the Tropic of Cancer between 154°40′ and 178°25′ W, and 18°54′ and 28° 15′ N. Its total land area is approximately 16,642 km2. About 3,000 km from the nearest continent, it is the most isolated group of islands on earth. Undersea mapping is ongoing, including annual multibeam surveys. The forereef slopes, between 20 and 500 m, have been extensively surveyed, but large areas of the shallow reefs and some bank tops are still unmapped (Pacific Islands Benthic Habitat Mapping Center at http://www.soest.hawaii.edu/pibhmc/pibhmc_nwhi.htm).

Bottom Line: And all data must have a temporal component so trends can be identified.Information on biotic and abiotic elements of the environment must be interactively linked.Impediments to assembling existing data and collecting new data on marine biodiversity include logistical problems as well as shortages in finances and taxonomic expertise.

View Article: PubMed Central - PubMed

Affiliation: Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America. fautin@ku.edu

ABSTRACT
Marine biodiversity of the United States (U.S.) is extensively documented, but data assembled by the United States National Committee for the Census of Marine Life demonstrate that even the most complete taxonomic inventories are based on records scattered in space and time. The best-known taxa are those of commercial importance. Body size is directly correlated with knowledge of a species, and knowledge also diminishes with distance from shore and depth. Measures of biodiversity other than species diversity, such as ecosystem and genetic diversity, are poorly documented. Threats to marine biodiversity in the U.S. are the same as those for most of the world: overexploitation of living resources; reduced water quality; coastal development; shipping; invasive species; rising temperature and concentrations of carbon dioxide in the surface ocean, and other changes that may be consequences of global change, including shifting currents; increased number and size of hypoxic or anoxic areas; and increased number and duration of harmful algal blooms. More information must be obtained through field and laboratory research and monitoring that involve innovative sampling techniques (such as genetics and acoustics), but data that already exist must be made accessible. And all data must have a temporal component so trends can be identified. As data are compiled, techniques must be developed to make certain that scales are compatible, to combine and reconcile data collected for various purposes with disparate gear, and to automate taxonomic changes. Information on biotic and abiotic elements of the environment must be interactively linked. Impediments to assembling existing data and collecting new data on marine biodiversity include logistical problems as well as shortages in finances and taxonomic expertise.

Show MeSH
Related in: MedlinePlus