Limits...
An overview of marine biodiversity in United States waters.

Fautin D, Dalton P, Incze LS, Leong JA, Pautzke C, Rosenberg A, Sandifer P, Sedberry G, Tunnell JW, Abbott I, Brainard RE, Brodeur M, Eldredge LG, Feldman M, Moretzsohn F, Vroom PS, Wainstein M, Wolff N - PLoS ONE (2010)

Bottom Line: And all data must have a temporal component so trends can be identified.Information on biotic and abiotic elements of the environment must be interactively linked.Impediments to assembling existing data and collecting new data on marine biodiversity include logistical problems as well as shortages in finances and taxonomic expertise.

View Article: PubMed Central - PubMed

Affiliation: Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America. fautin@ku.edu

ABSTRACT
Marine biodiversity of the United States (U.S.) is extensively documented, but data assembled by the United States National Committee for the Census of Marine Life demonstrate that even the most complete taxonomic inventories are based on records scattered in space and time. The best-known taxa are those of commercial importance. Body size is directly correlated with knowledge of a species, and knowledge also diminishes with distance from shore and depth. Measures of biodiversity other than species diversity, such as ecosystem and genetic diversity, are poorly documented. Threats to marine biodiversity in the U.S. are the same as those for most of the world: overexploitation of living resources; reduced water quality; coastal development; shipping; invasive species; rising temperature and concentrations of carbon dioxide in the surface ocean, and other changes that may be consequences of global change, including shifting currents; increased number and size of hypoxic or anoxic areas; and increased number and duration of harmful algal blooms. More information must be obtained through field and laboratory research and monitoring that involve innovative sampling techniques (such as genetics and acoustics), but data that already exist must be made accessible. And all data must have a temporal component so trends can be identified. As data are compiled, techniques must be developed to make certain that scales are compatible, to combine and reconcile data collected for various purposes with disparate gear, and to automate taxonomic changes. Information on biotic and abiotic elements of the environment must be interactively linked. Impediments to assembling existing data and collecting new data on marine biodiversity include logistical problems as well as shortages in finances and taxonomic expertise.

Show MeSH

Related in: MedlinePlus

The SAB-Florida East Coast Large Marine Ecosystem.The large red arrow represents the Gulf Stream.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2914028&req=5

pone-0011914-g005: The SAB-Florida East Coast Large Marine Ecosystem.The large red arrow represents the Gulf Stream.

Mentions: The region includes marine habitats from Cape Hatteras, North Carolina to West Palm Beach, Florida, an area often referred to as the South Atlantic Bight or SAB [67]), plus the remaining southeast coast of Florida, including the Florida Keys (Figure 5). This large, complex, and diverse area, with Cape Hatteras, North Carolina and Cape Canaveral, Florida as well-recognized zoogeographic boundaries, extends seaward to the limit of the U.S. EEZ. Thus, it includes areas beyond the 200 m depth contour (generally considered the outer boundary of coastal and shelf realms, provinces, and ecoregions [22]) and encompassing the waters of the continental slope, Blake Plateau, and the Straits of Florida. For the purposes of this summary, the area considered will be called the SAB-Florida East Coast. For comparison with other biogeographic descriptions, it includes part of the Temperate North Atlantic Realm that contains the Warm Temperate Northwest Atlantic Province, and within that the Carolinian Ecoregion, and the subtropical zone (northern quarter and western Atlantic portions) of the Western Central Atlantic area (Fishing Area 31) of the Food and Agriculture Organization (FAO) of the United Nations.


An overview of marine biodiversity in United States waters.

Fautin D, Dalton P, Incze LS, Leong JA, Pautzke C, Rosenberg A, Sandifer P, Sedberry G, Tunnell JW, Abbott I, Brainard RE, Brodeur M, Eldredge LG, Feldman M, Moretzsohn F, Vroom PS, Wainstein M, Wolff N - PLoS ONE (2010)

The SAB-Florida East Coast Large Marine Ecosystem.The large red arrow represents the Gulf Stream.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2914028&req=5

pone-0011914-g005: The SAB-Florida East Coast Large Marine Ecosystem.The large red arrow represents the Gulf Stream.
Mentions: The region includes marine habitats from Cape Hatteras, North Carolina to West Palm Beach, Florida, an area often referred to as the South Atlantic Bight or SAB [67]), plus the remaining southeast coast of Florida, including the Florida Keys (Figure 5). This large, complex, and diverse area, with Cape Hatteras, North Carolina and Cape Canaveral, Florida as well-recognized zoogeographic boundaries, extends seaward to the limit of the U.S. EEZ. Thus, it includes areas beyond the 200 m depth contour (generally considered the outer boundary of coastal and shelf realms, provinces, and ecoregions [22]) and encompassing the waters of the continental slope, Blake Plateau, and the Straits of Florida. For the purposes of this summary, the area considered will be called the SAB-Florida East Coast. For comparison with other biogeographic descriptions, it includes part of the Temperate North Atlantic Realm that contains the Warm Temperate Northwest Atlantic Province, and within that the Carolinian Ecoregion, and the subtropical zone (northern quarter and western Atlantic portions) of the Western Central Atlantic area (Fishing Area 31) of the Food and Agriculture Organization (FAO) of the United Nations.

Bottom Line: And all data must have a temporal component so trends can be identified.Information on biotic and abiotic elements of the environment must be interactively linked.Impediments to assembling existing data and collecting new data on marine biodiversity include logistical problems as well as shortages in finances and taxonomic expertise.

View Article: PubMed Central - PubMed

Affiliation: Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America. fautin@ku.edu

ABSTRACT
Marine biodiversity of the United States (U.S.) is extensively documented, but data assembled by the United States National Committee for the Census of Marine Life demonstrate that even the most complete taxonomic inventories are based on records scattered in space and time. The best-known taxa are those of commercial importance. Body size is directly correlated with knowledge of a species, and knowledge also diminishes with distance from shore and depth. Measures of biodiversity other than species diversity, such as ecosystem and genetic diversity, are poorly documented. Threats to marine biodiversity in the U.S. are the same as those for most of the world: overexploitation of living resources; reduced water quality; coastal development; shipping; invasive species; rising temperature and concentrations of carbon dioxide in the surface ocean, and other changes that may be consequences of global change, including shifting currents; increased number and size of hypoxic or anoxic areas; and increased number and duration of harmful algal blooms. More information must be obtained through field and laboratory research and monitoring that involve innovative sampling techniques (such as genetics and acoustics), but data that already exist must be made accessible. And all data must have a temporal component so trends can be identified. As data are compiled, techniques must be developed to make certain that scales are compatible, to combine and reconcile data collected for various purposes with disparate gear, and to automate taxonomic changes. Information on biotic and abiotic elements of the environment must be interactively linked. Impediments to assembling existing data and collecting new data on marine biodiversity include logistical problems as well as shortages in finances and taxonomic expertise.

Show MeSH
Related in: MedlinePlus