Limits...
Novel biomarkers predict liver fibrosis in hepatitis C patients: alpha 2 macroglobulin, vitamin D binding protein and apolipoprotein AI.

Ho AS, Cheng CC, Lee SC, Liu ML, Lee JY, Wang WM, Wang CC - J. Biomed. Sci. (2010)

Bottom Line: Three serum samples of each fibrotic stage were analyzed by two-dimension difference gel electrophoresis (2D-DIGE).The differential proteins were identified by the cooperation of MALDI-TOF/TOF and MASCOT; then western blotting and Bio-Plex Suspension Array were used to quantify the protein levels.Three prominent candidate biomarkers were identified: alpha 2 macroglobulin (A2M) is up regulated; vitamin D binding protein (VDBP) and apolipoprotein AI (ApoAI) are down regulated.

View Article: PubMed Central - HTML - PubMed

Affiliation: Division of Gastroenterology, Buddhist Tzu Chi General Hospital, Taipei branch, Taiwan.

ABSTRACT

Background: The gold standard of assessing liver fibrosis is liver biopsy, which is invasive and not without risk. Therefore, searching for noninvasive serologic biomarkers for liver fibrosis is an importantly clinical issue.

Methods: A total of 16 healthy volunteers and 45 patients with chronic hepatitis C virus (HCV) were enrolled (F0: n = 16, F1: n = 7, F2: n = 17, F3: n = 8 and F4: n = 13, according to the METAVIR classification). Three serum samples of each fibrotic stage were analyzed by two-dimension difference gel electrophoresis (2D-DIGE). The differential proteins were identified by the cooperation of MALDI-TOF/TOF and MASCOT; then western blotting and Bio-Plex Suspension Array were used to quantify the protein levels.

Results: Three prominent candidate biomarkers were identified: alpha 2 macroglobulin (A2M) is up regulated; vitamin D binding protein (VDBP) and apolipoprotein AI (ApoAI) are down regulated. The serum concentration of A2M was significantly different among normal, mild (F1/F2) and advanced fibrosis (F3/F4) (p < 0.01). The protein levels of VDBP and ApoAI were significantly higher in normal/mild fibrosis, when compared to those in advanced fibrosis (both p < 0.01).

Conclusions: This study not only reveals three putative biomarkers of liver fibrosis (A2M, VDBP and ApoAI) but also proves the differential expressions of those markers in different stages of fibrosis. We expect that combination of these novel biomarkers could be applied clinically to predict the stage of liver fibrosis without the need of liver biopsy.

Show MeSH

Related in: MedlinePlus

Three novel biomarkers of liver fibrosis, A2M, VDBP and ApoAI, appear on the location of 162 kDa, 52 kDa and 28 kDa in the 2D-DIGE gels. Observably there are several adjacent spots near A2M, VDBP and ApoAI protein; the adjacent spots were identified as same as A2M, VDBP or ApoAI respectively.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2914022&req=5

Figure 1: Three novel biomarkers of liver fibrosis, A2M, VDBP and ApoAI, appear on the location of 162 kDa, 52 kDa and 28 kDa in the 2D-DIGE gels. Observably there are several adjacent spots near A2M, VDBP and ApoAI protein; the adjacent spots were identified as same as A2M, VDBP or ApoAI respectively.

Mentions: After the protein matching and statistics calculation with DeCyder 6.5 software, there were three putative proteins selected (p ≤ 0.05). These protein locations in 2D-PAGE gel are shown in Fig. 1. The three putative proteins were found out that they all appeared in eight gels (Fig. 2A, Fig. 2B and Fig. 2C). The three proteins were excised from gels, digested with trypsin, and identified by the cooperation of MALDI-TOF/TOF with MASCOT software (link to NCBI database, http://www.ncbi.nlm.nih.gov/). Alpha 2 macroglobulin (A2M) is up regulated whereas vitamin D binding protein (VDBP) and apolipoprotein AI (ApoAI) are down regulated in hepatic fibrosis serum (Fig. 2D, Fig. 2E and Fig. 2F; Table 2). Meanwhile, we noticed that A2M protein had a series of adjacent spots appeared in 2D-PAGE; besides, VDBP and ApoAI had two and one adjacent spots respectively (Fig. 1). Those different spots were identified as the same results as A2M, VDBP or ApoAI respectively.


Novel biomarkers predict liver fibrosis in hepatitis C patients: alpha 2 macroglobulin, vitamin D binding protein and apolipoprotein AI.

Ho AS, Cheng CC, Lee SC, Liu ML, Lee JY, Wang WM, Wang CC - J. Biomed. Sci. (2010)

Three novel biomarkers of liver fibrosis, A2M, VDBP and ApoAI, appear on the location of 162 kDa, 52 kDa and 28 kDa in the 2D-DIGE gels. Observably there are several adjacent spots near A2M, VDBP and ApoAI protein; the adjacent spots were identified as same as A2M, VDBP or ApoAI respectively.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2914022&req=5

Figure 1: Three novel biomarkers of liver fibrosis, A2M, VDBP and ApoAI, appear on the location of 162 kDa, 52 kDa and 28 kDa in the 2D-DIGE gels. Observably there are several adjacent spots near A2M, VDBP and ApoAI protein; the adjacent spots were identified as same as A2M, VDBP or ApoAI respectively.
Mentions: After the protein matching and statistics calculation with DeCyder 6.5 software, there were three putative proteins selected (p ≤ 0.05). These protein locations in 2D-PAGE gel are shown in Fig. 1. The three putative proteins were found out that they all appeared in eight gels (Fig. 2A, Fig. 2B and Fig. 2C). The three proteins were excised from gels, digested with trypsin, and identified by the cooperation of MALDI-TOF/TOF with MASCOT software (link to NCBI database, http://www.ncbi.nlm.nih.gov/). Alpha 2 macroglobulin (A2M) is up regulated whereas vitamin D binding protein (VDBP) and apolipoprotein AI (ApoAI) are down regulated in hepatic fibrosis serum (Fig. 2D, Fig. 2E and Fig. 2F; Table 2). Meanwhile, we noticed that A2M protein had a series of adjacent spots appeared in 2D-PAGE; besides, VDBP and ApoAI had two and one adjacent spots respectively (Fig. 1). Those different spots were identified as the same results as A2M, VDBP or ApoAI respectively.

Bottom Line: Three serum samples of each fibrotic stage were analyzed by two-dimension difference gel electrophoresis (2D-DIGE).The differential proteins were identified by the cooperation of MALDI-TOF/TOF and MASCOT; then western blotting and Bio-Plex Suspension Array were used to quantify the protein levels.Three prominent candidate biomarkers were identified: alpha 2 macroglobulin (A2M) is up regulated; vitamin D binding protein (VDBP) and apolipoprotein AI (ApoAI) are down regulated.

View Article: PubMed Central - HTML - PubMed

Affiliation: Division of Gastroenterology, Buddhist Tzu Chi General Hospital, Taipei branch, Taiwan.

ABSTRACT

Background: The gold standard of assessing liver fibrosis is liver biopsy, which is invasive and not without risk. Therefore, searching for noninvasive serologic biomarkers for liver fibrosis is an importantly clinical issue.

Methods: A total of 16 healthy volunteers and 45 patients with chronic hepatitis C virus (HCV) were enrolled (F0: n = 16, F1: n = 7, F2: n = 17, F3: n = 8 and F4: n = 13, according to the METAVIR classification). Three serum samples of each fibrotic stage were analyzed by two-dimension difference gel electrophoresis (2D-DIGE). The differential proteins were identified by the cooperation of MALDI-TOF/TOF and MASCOT; then western blotting and Bio-Plex Suspension Array were used to quantify the protein levels.

Results: Three prominent candidate biomarkers were identified: alpha 2 macroglobulin (A2M) is up regulated; vitamin D binding protein (VDBP) and apolipoprotein AI (ApoAI) are down regulated. The serum concentration of A2M was significantly different among normal, mild (F1/F2) and advanced fibrosis (F3/F4) (p < 0.01). The protein levels of VDBP and ApoAI were significantly higher in normal/mild fibrosis, when compared to those in advanced fibrosis (both p < 0.01).

Conclusions: This study not only reveals three putative biomarkers of liver fibrosis (A2M, VDBP and ApoAI) but also proves the differential expressions of those markers in different stages of fibrosis. We expect that combination of these novel biomarkers could be applied clinically to predict the stage of liver fibrosis without the need of liver biopsy.

Show MeSH
Related in: MedlinePlus