Limits...
Marine biodiversity of Aotearoa New Zealand.

Gordon DP, Beaumont J, MacDiarmid A, Robertson DA, Ahyong ST - PLoS ONE (2010)

Bottom Line: The above-mentioned marine information sources, published literature, and reports were scrutinized to give the results summarized here for the first time (current to 2010), including data on endemism and invasive species.Marine-taxonomic expertise in New Zealand covers a broad number of taxa but is, proportionately, at or near its lowest level since the Second World War.Threats and protection measures concerning New Zealand's marine biodiversity are commented on, along with potential and priorities for future research.

View Article: PubMed Central - PubMed

Affiliation: National Institute of Water and Atmospheric Research, Kilbirnie, Wellington, New Zealand. d.gordon@niwa.co.nz

ABSTRACT
The marine-biodiversity assessment of New Zealand (Aotearoa as known to Māori) is confined to the 200 nautical-mile boundary of the Exclusive Economic Zone, which, at 4.2 million km(2), is one of the largest in the world. It spans 30 degrees of latitude and includes a high diversity of seafloor relief, including a trench 10 km deep. Much of this region remains unexplored biologically, especially the 50% of the EEZ deeper than 2,000 m. Knowledge of the marine biota is based on more than 200 years of marine exploration in the region. The major oceanographic data repository is the National Institute of Water and Atmospheric Research (NIWA), which is involved in several Census of Marine Life field projects and is the location of the Southwestern Pacific Regional OBIS Node; NIWA is also data manager and custodian for fisheries research data owned by the Ministry of Fisheries. Related data sources cover alien species, environmental measures, and historical information. Museum collections in New Zealand hold more than 800,000 registered lots representing several million specimens. During the past decade, 220 taxonomic specialists (85 marine) from 18 countries have been engaged in a project to review New Zealand's entire biodiversity. The above-mentioned marine information sources, published literature, and reports were scrutinized to give the results summarized here for the first time (current to 2010), including data on endemism and invasive species. There are 17,135 living species in the EEZ. This diversity includes 4,315 known undescribed species in collections. Species diversity for the most intensively studied phylum-level taxa (Porifera, Cnidaria, Mollusca, Brachiopoda, Bryozoa, Kinorhyncha, Echinodermata, Chordata) is more or less equivalent to that in the ERMS (European Register of Marine Species) region, which is 5.5 times larger in area than the New Zealand EEZ. The implication is that, when all other New Zealand phyla are equally well studied, total marine diversity in the EEZ may be expected to equal that in the ERMS region. This equivalence invites testable hypotheses to explain it. There are 177 naturalized alien species in New Zealand coastal waters, mostly in ports and harbours. Marine-taxonomic expertise in New Zealand covers a broad number of taxa but is, proportionately, at or near its lowest level since the Second World War. Nevertheless, collections are well supported by funding and are continually added to. Threats and protection measures concerning New Zealand's marine biodiversity are commented on, along with potential and priorities for future research.

Show MeSH
Location and depth of 30,518 bottom trawls in the NIWA Trawl Database, 1961–2009 recording the occurrences of 634 species of New Zealand fish and squid.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2914018&req=5

pone-0010905-g003: Location and depth of 30,518 bottom trawls in the NIWA Trawl Database, 1961–2009 recording the occurrences of 634 species of New Zealand fish and squid.

Mentions: The National Institute of Water and Atmospheric Research (NIWA) provides by far the largest marine research activity and capability in New Zealand [25] — a position held by NIWA and its predecessor organization (mainly the New Zealand Oceanographic Institute) for more than five decades. This OBIS node currently holds about 500,000 records of benthic invertebrates and fish from the New Zealand region (and the Ross Sea). NIWA carries out the role of data manager and custodian for the fisheries research data owned by the New Zealand Ministry of Fisheries and for all seabed bathymetry data owned by Land Information New Zealand. The Fisheries Database includes Ministry of Fisheries and NIWA research trawl-survey data (30,518 records, 1961–2009: Table 4) and industry observer records (Table 5). The research trawl surveys were (and continue to be) carried out to determine demersal fish and squid distribution, abundance, population parameters, changes, and impacts on biodiversity and cover most areas of the EEZ from about 5 to 1,500 m depth (Figure 3). The data are analyzed to determine the distribution of species, the types and composition of fish communities, their changes in distribution and abundance over time, and whether these changes might be related to environmental fluctuations or fishing activity. Atlases showing the distribution of the most frequently caught demersal, midwater, and pelagic species have been published [26]–[28]. Pelagic species are also included in the database, based on aerial sightings by pilots working with purse-seine vessels. Since 1976, more than 70,700 sightings have been made from northern North Island to the mid-South Island, and data have been recorded on about 100 species including commercially important pelagics. NIWA also manages large datasets from acoustic surveys conducted between 1987 and the present around New Zealand, including echograms characteristic of specific epibenthic and midwater fish species. New Zealand's five marine laboratories, ranging in latitudinal spread from 36°16′ S to 45°49′ S, hold local marine-biodiversity data and ancillary environmental information. The oldest laboratory dates from 1951; three others opened in the early 1960s and a fifth in 2009. Two of them are adjacent to no-take marine reserves.


Marine biodiversity of Aotearoa New Zealand.

Gordon DP, Beaumont J, MacDiarmid A, Robertson DA, Ahyong ST - PLoS ONE (2010)

Location and depth of 30,518 bottom trawls in the NIWA Trawl Database, 1961–2009 recording the occurrences of 634 species of New Zealand fish and squid.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2914018&req=5

pone-0010905-g003: Location and depth of 30,518 bottom trawls in the NIWA Trawl Database, 1961–2009 recording the occurrences of 634 species of New Zealand fish and squid.
Mentions: The National Institute of Water and Atmospheric Research (NIWA) provides by far the largest marine research activity and capability in New Zealand [25] — a position held by NIWA and its predecessor organization (mainly the New Zealand Oceanographic Institute) for more than five decades. This OBIS node currently holds about 500,000 records of benthic invertebrates and fish from the New Zealand region (and the Ross Sea). NIWA carries out the role of data manager and custodian for the fisheries research data owned by the New Zealand Ministry of Fisheries and for all seabed bathymetry data owned by Land Information New Zealand. The Fisheries Database includes Ministry of Fisheries and NIWA research trawl-survey data (30,518 records, 1961–2009: Table 4) and industry observer records (Table 5). The research trawl surveys were (and continue to be) carried out to determine demersal fish and squid distribution, abundance, population parameters, changes, and impacts on biodiversity and cover most areas of the EEZ from about 5 to 1,500 m depth (Figure 3). The data are analyzed to determine the distribution of species, the types and composition of fish communities, their changes in distribution and abundance over time, and whether these changes might be related to environmental fluctuations or fishing activity. Atlases showing the distribution of the most frequently caught demersal, midwater, and pelagic species have been published [26]–[28]. Pelagic species are also included in the database, based on aerial sightings by pilots working with purse-seine vessels. Since 1976, more than 70,700 sightings have been made from northern North Island to the mid-South Island, and data have been recorded on about 100 species including commercially important pelagics. NIWA also manages large datasets from acoustic surveys conducted between 1987 and the present around New Zealand, including echograms characteristic of specific epibenthic and midwater fish species. New Zealand's five marine laboratories, ranging in latitudinal spread from 36°16′ S to 45°49′ S, hold local marine-biodiversity data and ancillary environmental information. The oldest laboratory dates from 1951; three others opened in the early 1960s and a fifth in 2009. Two of them are adjacent to no-take marine reserves.

Bottom Line: The above-mentioned marine information sources, published literature, and reports were scrutinized to give the results summarized here for the first time (current to 2010), including data on endemism and invasive species.Marine-taxonomic expertise in New Zealand covers a broad number of taxa but is, proportionately, at or near its lowest level since the Second World War.Threats and protection measures concerning New Zealand's marine biodiversity are commented on, along with potential and priorities for future research.

View Article: PubMed Central - PubMed

Affiliation: National Institute of Water and Atmospheric Research, Kilbirnie, Wellington, New Zealand. d.gordon@niwa.co.nz

ABSTRACT
The marine-biodiversity assessment of New Zealand (Aotearoa as known to Māori) is confined to the 200 nautical-mile boundary of the Exclusive Economic Zone, which, at 4.2 million km(2), is one of the largest in the world. It spans 30 degrees of latitude and includes a high diversity of seafloor relief, including a trench 10 km deep. Much of this region remains unexplored biologically, especially the 50% of the EEZ deeper than 2,000 m. Knowledge of the marine biota is based on more than 200 years of marine exploration in the region. The major oceanographic data repository is the National Institute of Water and Atmospheric Research (NIWA), which is involved in several Census of Marine Life field projects and is the location of the Southwestern Pacific Regional OBIS Node; NIWA is also data manager and custodian for fisheries research data owned by the Ministry of Fisheries. Related data sources cover alien species, environmental measures, and historical information. Museum collections in New Zealand hold more than 800,000 registered lots representing several million specimens. During the past decade, 220 taxonomic specialists (85 marine) from 18 countries have been engaged in a project to review New Zealand's entire biodiversity. The above-mentioned marine information sources, published literature, and reports were scrutinized to give the results summarized here for the first time (current to 2010), including data on endemism and invasive species. There are 17,135 living species in the EEZ. This diversity includes 4,315 known undescribed species in collections. Species diversity for the most intensively studied phylum-level taxa (Porifera, Cnidaria, Mollusca, Brachiopoda, Bryozoa, Kinorhyncha, Echinodermata, Chordata) is more or less equivalent to that in the ERMS (European Register of Marine Species) region, which is 5.5 times larger in area than the New Zealand EEZ. The implication is that, when all other New Zealand phyla are equally well studied, total marine diversity in the EEZ may be expected to equal that in the ERMS region. This equivalence invites testable hypotheses to explain it. There are 177 naturalized alien species in New Zealand coastal waters, mostly in ports and harbours. Marine-taxonomic expertise in New Zealand covers a broad number of taxa but is, proportionately, at or near its lowest level since the Second World War. Nevertheless, collections are well supported by funding and are continually added to. Threats and protection measures concerning New Zealand's marine biodiversity are commented on, along with potential and priorities for future research.

Show MeSH