Limits...
Thymoquinone and cisplatin as a therapeutic combination in lung cancer: In vitro and in vivo.

Jafri SH, Glass J, Shi R, Zhang S, Prince M, Kleiner-Hancock H - J. Exp. Clin. Cancer Res. (2010)

Bottom Line: TQ was able to inhibit cell proliferation, reduce cell viability and induce apoptosis.Using a mouse xenograft model we were able to demonstrate that combination of TQ and CDDP was well tolerated and significantly reduced tumor volume and tumor weight without additional toxicity to the mice.In the combination arms (TQ5 mg/kg/Cis 2.5 mg/kg) tumor volume was reduced by 59% and (TQ20 mg/kg/Cis 2.5 mg/kg) by 79% as compared to control which is consistent with in vitro data.

View Article: PubMed Central - HTML - PubMed

Affiliation: Feist-Weiller Cancer Center, Louisiana State University, Shreveport, LA 71130 USA. sjafri@lsuhsc.edu

ABSTRACT

Background: Thymoquinone (TQ) is a compound extracted from Black Caraway seeds of Nigella Sativa and is active against various cancers. Cisplatin (CDDP) is the most active chemotherapeutic agent in Lung Cancer. Here we report activity of TQ against non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) cell lines alone and in combination with Cisplatin (CDDP).

Methods: For proliferation MTT assay, cell viability trypan blue assay and for apoptosis Annexin-V FITC assay were used in NCI-H460 and NCI-H146 cell lines. Inhibition of invasion by TQ was assessed using Matrigel assay and its affect on release of various cytokines was determined using RayBio Human Cytokine detection kit. Mouse xenograft model using NCI-H460 was used to determine in vivo activity of TQ and CDDP. Inhibition of LPS induced NF-kappaB expression by TQ was determined using transgenic mice expressing a luciferase reporter.

Results: TQ was able to inhibit cell proliferation, reduce cell viability and induce apoptosis. TQ at 100 microM and CDDP at 5 muM inhibited cell proliferation by nearly 90% and the combination showed synergism. TQ was able to induced apoptosis in both NCI-H460 and NCI-H146 cell lines. TQ also appears to affect the extracellular environment inhibiting invasion and reducing the production of two cytokines ENA-78 and Gro-alpha which are involved in neo-angiogenesis. Using a mouse xenograft model we were able to demonstrate that combination of TQ and CDDP was well tolerated and significantly reduced tumor volume and tumor weight without additional toxicity to the mice. In the combination arms (TQ5 mg/kg/Cis 2.5 mg/kg) tumor volume was reduced by 59% and (TQ20 mg/kg/Cis 2.5 mg/kg) by 79% as compared to control which is consistent with in vitro data. TQ down regulated NF-kappaB expression which may explain its various cellular activities and this activity may prove useful in overcoming CDDP resistance from over expression of NF-kappaB.

Conclusions: Thus TQ and CDDP appear to be an active therapeutic combination in lung cancer.

Show MeSH

Related in: MedlinePlus

LPS induced NF-κB expression using luciferase reporter mice. Upper row: NF-κB expression pre-screen; Middle row NF-κB expression 3 hrs after LPS induction; Lower row NF-κB expression 24 hrs after LPS induction. Mice when pre-treated with TQ 5 mg/kg (Right column) showed less NF-κB expression at 3 hrs as compared to control treat mice (Left column). Level of NF-κB expression returned to baseline 24 hrs after exposure to LPS. The luminescence from luciferase was detected real time using an ultrasensitive camera IVIS 100 Imaging system. The luminescence intensity was quantitated in regions of interest (ROI) using Living Image® 3.0 software as shown in table 1.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2909169&req=5

Figure 12: LPS induced NF-κB expression using luciferase reporter mice. Upper row: NF-κB expression pre-screen; Middle row NF-κB expression 3 hrs after LPS induction; Lower row NF-κB expression 24 hrs after LPS induction. Mice when pre-treated with TQ 5 mg/kg (Right column) showed less NF-κB expression at 3 hrs as compared to control treat mice (Left column). Level of NF-κB expression returned to baseline 24 hrs after exposure to LPS. The luminescence from luciferase was detected real time using an ultrasensitive camera IVIS 100 Imaging system. The luminescence intensity was quantitated in regions of interest (ROI) using Living Image® 3.0 software as shown in table 1.

Mentions: TQ by itself had no effect on basal luciferase activity and NF-κB expression. (Figure 12 top panels). However, at 3 hrs after treatment with LPS the increased luminescence indicating activation of NF-κB was suppressed by prior treatment with TQ at 5 and 20 mg/kg as compared to control though this effect was not statistically significant (P < 0.10). This effect however was not observed at 24 hrs point interval, where most of luminescence had returned to baseline (Figure 12, Table 1)


Thymoquinone and cisplatin as a therapeutic combination in lung cancer: In vitro and in vivo.

Jafri SH, Glass J, Shi R, Zhang S, Prince M, Kleiner-Hancock H - J. Exp. Clin. Cancer Res. (2010)

LPS induced NF-κB expression using luciferase reporter mice. Upper row: NF-κB expression pre-screen; Middle row NF-κB expression 3 hrs after LPS induction; Lower row NF-κB expression 24 hrs after LPS induction. Mice when pre-treated with TQ 5 mg/kg (Right column) showed less NF-κB expression at 3 hrs as compared to control treat mice (Left column). Level of NF-κB expression returned to baseline 24 hrs after exposure to LPS. The luminescence from luciferase was detected real time using an ultrasensitive camera IVIS 100 Imaging system. The luminescence intensity was quantitated in regions of interest (ROI) using Living Image® 3.0 software as shown in table 1.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2909169&req=5

Figure 12: LPS induced NF-κB expression using luciferase reporter mice. Upper row: NF-κB expression pre-screen; Middle row NF-κB expression 3 hrs after LPS induction; Lower row NF-κB expression 24 hrs after LPS induction. Mice when pre-treated with TQ 5 mg/kg (Right column) showed less NF-κB expression at 3 hrs as compared to control treat mice (Left column). Level of NF-κB expression returned to baseline 24 hrs after exposure to LPS. The luminescence from luciferase was detected real time using an ultrasensitive camera IVIS 100 Imaging system. The luminescence intensity was quantitated in regions of interest (ROI) using Living Image® 3.0 software as shown in table 1.
Mentions: TQ by itself had no effect on basal luciferase activity and NF-κB expression. (Figure 12 top panels). However, at 3 hrs after treatment with LPS the increased luminescence indicating activation of NF-κB was suppressed by prior treatment with TQ at 5 and 20 mg/kg as compared to control though this effect was not statistically significant (P < 0.10). This effect however was not observed at 24 hrs point interval, where most of luminescence had returned to baseline (Figure 12, Table 1)

Bottom Line: TQ was able to inhibit cell proliferation, reduce cell viability and induce apoptosis.Using a mouse xenograft model we were able to demonstrate that combination of TQ and CDDP was well tolerated and significantly reduced tumor volume and tumor weight without additional toxicity to the mice.In the combination arms (TQ5 mg/kg/Cis 2.5 mg/kg) tumor volume was reduced by 59% and (TQ20 mg/kg/Cis 2.5 mg/kg) by 79% as compared to control which is consistent with in vitro data.

View Article: PubMed Central - HTML - PubMed

Affiliation: Feist-Weiller Cancer Center, Louisiana State University, Shreveport, LA 71130 USA. sjafri@lsuhsc.edu

ABSTRACT

Background: Thymoquinone (TQ) is a compound extracted from Black Caraway seeds of Nigella Sativa and is active against various cancers. Cisplatin (CDDP) is the most active chemotherapeutic agent in Lung Cancer. Here we report activity of TQ against non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) cell lines alone and in combination with Cisplatin (CDDP).

Methods: For proliferation MTT assay, cell viability trypan blue assay and for apoptosis Annexin-V FITC assay were used in NCI-H460 and NCI-H146 cell lines. Inhibition of invasion by TQ was assessed using Matrigel assay and its affect on release of various cytokines was determined using RayBio Human Cytokine detection kit. Mouse xenograft model using NCI-H460 was used to determine in vivo activity of TQ and CDDP. Inhibition of LPS induced NF-kappaB expression by TQ was determined using transgenic mice expressing a luciferase reporter.

Results: TQ was able to inhibit cell proliferation, reduce cell viability and induce apoptosis. TQ at 100 microM and CDDP at 5 muM inhibited cell proliferation by nearly 90% and the combination showed synergism. TQ was able to induced apoptosis in both NCI-H460 and NCI-H146 cell lines. TQ also appears to affect the extracellular environment inhibiting invasion and reducing the production of two cytokines ENA-78 and Gro-alpha which are involved in neo-angiogenesis. Using a mouse xenograft model we were able to demonstrate that combination of TQ and CDDP was well tolerated and significantly reduced tumor volume and tumor weight without additional toxicity to the mice. In the combination arms (TQ5 mg/kg/Cis 2.5 mg/kg) tumor volume was reduced by 59% and (TQ20 mg/kg/Cis 2.5 mg/kg) by 79% as compared to control which is consistent with in vitro data. TQ down regulated NF-kappaB expression which may explain its various cellular activities and this activity may prove useful in overcoming CDDP resistance from over expression of NF-kappaB.

Conclusions: Thus TQ and CDDP appear to be an active therapeutic combination in lung cancer.

Show MeSH
Related in: MedlinePlus