Limits...
Design and evaluation of an ultra-slim objective for in-vivo deep optical biopsy.

Landau SM, Liang C, Kester RT, Tkaczyk TS, Descour MR - Opt Express (2010)

Bottom Line: To ensure high-quality imaging performance, experimental tests were performed to characterize fiber bundle's light-coupling efficiency and simulations were performed to evaluate the impact of candidate lens materials' autofluorescence.A prototype of NA = 0.4, 250-microm field of view, ultra-slim objective optics was built and tested, yielding diffraction-limited performance and estimated resolution of 0.9 microm.When used in conjunction with a commercial coherent fiber bundle to relay the image formed by the objective, the measured resolution was 2.5 microm.

View Article: PubMed Central - PubMed

Affiliation: University of Arizona, College of Optical Sciences, 1630 E University Blvd, Tucson, AZ 85721, USA. slandau@optics.arizona.edu

ABSTRACT
An estimated 1.6 million breast biopsies are performed in the US each year. In order to provide real-time, in-vivo imaging with sub-cellular resolution for optical biopsies, we have designed an ultra-slim objective to fit inside the 1-mm-diameter hypodermic needles currently used for breast biopsies to image tissue stained by the fluorescent probe proflavine. To ensure high-quality imaging performance, experimental tests were performed to characterize fiber bundle's light-coupling efficiency and simulations were performed to evaluate the impact of candidate lens materials' autofluorescence. A prototype of NA = 0.4, 250-microm field of view, ultra-slim objective optics was built and tested, yielding diffraction-limited performance and estimated resolution of 0.9 microm. When used in conjunction with a commercial coherent fiber bundle to relay the image formed by the objective, the measured resolution was 2.5 microm.

Show MeSH
Imaging results obtained from a custom, miniature US Air Force resolution target. (a) Image obtained directly with the ultra-slim objective, (b) Image obtained through a coherent fiber bundle. See text for details.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2909099&req=5

g011: Imaging results obtained from a custom, miniature US Air Force resolution target. (a) Image obtained directly with the ultra-slim objective, (b) Image obtained through a coherent fiber bundle. See text for details.

Mentions: An example of the qualitative imaging performance can be seen in Fig. 11Fig. 11


Design and evaluation of an ultra-slim objective for in-vivo deep optical biopsy.

Landau SM, Liang C, Kester RT, Tkaczyk TS, Descour MR - Opt Express (2010)

Imaging results obtained from a custom, miniature US Air Force resolution target. (a) Image obtained directly with the ultra-slim objective, (b) Image obtained through a coherent fiber bundle. See text for details.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2909099&req=5

g011: Imaging results obtained from a custom, miniature US Air Force resolution target. (a) Image obtained directly with the ultra-slim objective, (b) Image obtained through a coherent fiber bundle. See text for details.
Mentions: An example of the qualitative imaging performance can be seen in Fig. 11Fig. 11

Bottom Line: To ensure high-quality imaging performance, experimental tests were performed to characterize fiber bundle's light-coupling efficiency and simulations were performed to evaluate the impact of candidate lens materials' autofluorescence.A prototype of NA = 0.4, 250-microm field of view, ultra-slim objective optics was built and tested, yielding diffraction-limited performance and estimated resolution of 0.9 microm.When used in conjunction with a commercial coherent fiber bundle to relay the image formed by the objective, the measured resolution was 2.5 microm.

View Article: PubMed Central - PubMed

Affiliation: University of Arizona, College of Optical Sciences, 1630 E University Blvd, Tucson, AZ 85721, USA. slandau@optics.arizona.edu

ABSTRACT
An estimated 1.6 million breast biopsies are performed in the US each year. In order to provide real-time, in-vivo imaging with sub-cellular resolution for optical biopsies, we have designed an ultra-slim objective to fit inside the 1-mm-diameter hypodermic needles currently used for breast biopsies to image tissue stained by the fluorescent probe proflavine. To ensure high-quality imaging performance, experimental tests were performed to characterize fiber bundle's light-coupling efficiency and simulations were performed to evaluate the impact of candidate lens materials' autofluorescence. A prototype of NA = 0.4, 250-microm field of view, ultra-slim objective optics was built and tested, yielding diffraction-limited performance and estimated resolution of 0.9 microm. When used in conjunction with a commercial coherent fiber bundle to relay the image formed by the objective, the measured resolution was 2.5 microm.

Show MeSH