Limits...
Differential impact of tetratricopeptide repeat proteins on the steroid hormone receptors.

Schülke JP, Wochnik GM, Lang-Rollin I, Gassen NC, Knapp RT, Berning B, Yassouridis A, Rein T - PLoS ONE (2010)

Bottom Line: We compared the influence of the TPR proteins FK506 binding proteins 51 and 52, protein phosphatase-5, C-terminus of Hsp70 interacting protein, cyclophillin 40, hepatitis-virus-B X-associated protein-2, and tetratricopeptide repeat protein-2 on all six steroid hormone receptors in a homogeneous mammalian cell system.The results of this comprehensive study provide important insight into chaperoning of diverse client proteins via the combinatorial action of (co)-chaperones.The differential effects of the TPR proteins on steroid receptors bear on all physiological processes related to steroid hormone activity.

View Article: PubMed Central - PubMed

Affiliation: Chaperone Research Group, Max Planck Institute of Psychiatry, Munich, Germany.

ABSTRACT

Background: Tetratricopeptide repeat (TPR) motif containing co-chaperones of the chaperone Hsp90 are considered control modules that govern activity and specificity of this central folding platform. Steroid receptors are paradigm clients of Hsp90. The influence of some TPR proteins on selected receptors has been described, but a comprehensive analysis of the effects of TPR proteins on all steroid receptors has not been accomplished yet.

Methodology and principal findings: We compared the influence of the TPR proteins FK506 binding proteins 51 and 52, protein phosphatase-5, C-terminus of Hsp70 interacting protein, cyclophillin 40, hepatitis-virus-B X-associated protein-2, and tetratricopeptide repeat protein-2 on all six steroid hormone receptors in a homogeneous mammalian cell system. To be able to assess each cofactor's effect on the transcriptional activity of on each steroid receptor we employed transient transfection in a reporter gene assay. In addition, we evaluated the interactions of the TPR proteins with the receptors and components of the Hsp90 chaperone heterocomplex by coimmunoprecipitation. In the functional assays, corticosteroid and progesterone receptors displayed the most sensitive and distinct reaction to the TPR proteins. Androgen receptor's activity was moderately impaired by most cofactors, whereas the Estrogen receptors' activity was impaired by most cofactors only to a minor degree. Second, interaction studies revealed that the strongly receptor-interacting co-chaperones were all among the inhibitory proteins. Intriguingly, the TPR-proteins also differentially co-precipitated the heterochaperone complex components Hsp90, Hsp70, and p23, pointing to differences in their modes of action.

Conclusion and significance: The results of this comprehensive study provide important insight into chaperoning of diverse client proteins via the combinatorial action of (co)-chaperones. The differential effects of the TPR proteins on steroid receptors bear on all physiological processes related to steroid hormone activity.

Show MeSH

Related in: MedlinePlus

Differential interaction of TPR-proteins with MR heterocomplexes.HEK-293 cells were transfected as described for figure 7, except that HA-MR was expressed instead of HA-GR. Cells were processed and protein interactions were analyzed also as described for figure 7. In A, binding of TPR-proteins is presented relative to the mean of the normalized FLAG-eluate signals of CHIP, FKBP51, FKBP52 and PP5. Quantification represents means of three independent experiments (two for TPR2) +S.E.M.. In B, binding is normalized as in figure 7. C, FLAG- and HA-immunoblot signals of the cell extracts, demonstrating expression of TPR proteins and MR. Quantifications represent means of three independent experiments +S.E.M.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2908686&req=5

pone-0011717-g008: Differential interaction of TPR-proteins with MR heterocomplexes.HEK-293 cells were transfected as described for figure 7, except that HA-MR was expressed instead of HA-GR. Cells were processed and protein interactions were analyzed also as described for figure 7. In A, binding of TPR-proteins is presented relative to the mean of the normalized FLAG-eluate signals of CHIP, FKBP51, FKBP52 and PP5. Quantification represents means of three independent experiments (two for TPR2) +S.E.M.. In B, binding is normalized as in figure 7. C, FLAG- and HA-immunoblot signals of the cell extracts, demonstrating expression of TPR proteins and MR. Quantifications represent means of three independent experiments +S.E.M.

Mentions: For MR, the interaction pattern of the TPR cofactors was similar to that of GR. Again, CHIP, FKBP51 and TPR2 exhibited strong interaction, while Cyp40 showed very little binding, both when immunoprecipitating the receptor or the cofactor (Fig. 8 A and B). Of note, the inability of PP5 to inhibit MR's transcriptional activity was not reflected by a corresponding low incorporation into MR heterocomplexes.


Differential impact of tetratricopeptide repeat proteins on the steroid hormone receptors.

Schülke JP, Wochnik GM, Lang-Rollin I, Gassen NC, Knapp RT, Berning B, Yassouridis A, Rein T - PLoS ONE (2010)

Differential interaction of TPR-proteins with MR heterocomplexes.HEK-293 cells were transfected as described for figure 7, except that HA-MR was expressed instead of HA-GR. Cells were processed and protein interactions were analyzed also as described for figure 7. In A, binding of TPR-proteins is presented relative to the mean of the normalized FLAG-eluate signals of CHIP, FKBP51, FKBP52 and PP5. Quantification represents means of three independent experiments (two for TPR2) +S.E.M.. In B, binding is normalized as in figure 7. C, FLAG- and HA-immunoblot signals of the cell extracts, demonstrating expression of TPR proteins and MR. Quantifications represent means of three independent experiments +S.E.M.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2908686&req=5

pone-0011717-g008: Differential interaction of TPR-proteins with MR heterocomplexes.HEK-293 cells were transfected as described for figure 7, except that HA-MR was expressed instead of HA-GR. Cells were processed and protein interactions were analyzed also as described for figure 7. In A, binding of TPR-proteins is presented relative to the mean of the normalized FLAG-eluate signals of CHIP, FKBP51, FKBP52 and PP5. Quantification represents means of three independent experiments (two for TPR2) +S.E.M.. In B, binding is normalized as in figure 7. C, FLAG- and HA-immunoblot signals of the cell extracts, demonstrating expression of TPR proteins and MR. Quantifications represent means of three independent experiments +S.E.M.
Mentions: For MR, the interaction pattern of the TPR cofactors was similar to that of GR. Again, CHIP, FKBP51 and TPR2 exhibited strong interaction, while Cyp40 showed very little binding, both when immunoprecipitating the receptor or the cofactor (Fig. 8 A and B). Of note, the inability of PP5 to inhibit MR's transcriptional activity was not reflected by a corresponding low incorporation into MR heterocomplexes.

Bottom Line: We compared the influence of the TPR proteins FK506 binding proteins 51 and 52, protein phosphatase-5, C-terminus of Hsp70 interacting protein, cyclophillin 40, hepatitis-virus-B X-associated protein-2, and tetratricopeptide repeat protein-2 on all six steroid hormone receptors in a homogeneous mammalian cell system.The results of this comprehensive study provide important insight into chaperoning of diverse client proteins via the combinatorial action of (co)-chaperones.The differential effects of the TPR proteins on steroid receptors bear on all physiological processes related to steroid hormone activity.

View Article: PubMed Central - PubMed

Affiliation: Chaperone Research Group, Max Planck Institute of Psychiatry, Munich, Germany.

ABSTRACT

Background: Tetratricopeptide repeat (TPR) motif containing co-chaperones of the chaperone Hsp90 are considered control modules that govern activity and specificity of this central folding platform. Steroid receptors are paradigm clients of Hsp90. The influence of some TPR proteins on selected receptors has been described, but a comprehensive analysis of the effects of TPR proteins on all steroid receptors has not been accomplished yet.

Methodology and principal findings: We compared the influence of the TPR proteins FK506 binding proteins 51 and 52, protein phosphatase-5, C-terminus of Hsp70 interacting protein, cyclophillin 40, hepatitis-virus-B X-associated protein-2, and tetratricopeptide repeat protein-2 on all six steroid hormone receptors in a homogeneous mammalian cell system. To be able to assess each cofactor's effect on the transcriptional activity of on each steroid receptor we employed transient transfection in a reporter gene assay. In addition, we evaluated the interactions of the TPR proteins with the receptors and components of the Hsp90 chaperone heterocomplex by coimmunoprecipitation. In the functional assays, corticosteroid and progesterone receptors displayed the most sensitive and distinct reaction to the TPR proteins. Androgen receptor's activity was moderately impaired by most cofactors, whereas the Estrogen receptors' activity was impaired by most cofactors only to a minor degree. Second, interaction studies revealed that the strongly receptor-interacting co-chaperones were all among the inhibitory proteins. Intriguingly, the TPR-proteins also differentially co-precipitated the heterochaperone complex components Hsp90, Hsp70, and p23, pointing to differences in their modes of action.

Conclusion and significance: The results of this comprehensive study provide important insight into chaperoning of diverse client proteins via the combinatorial action of (co)-chaperones. The differential effects of the TPR proteins on steroid receptors bear on all physiological processes related to steroid hormone activity.

Show MeSH
Related in: MedlinePlus