Limits...
Implantation of mouse embryonic stem cell-derived cardiac progenitor cells preserves function of infarcted murine hearts.

Christoforou N, Oskouei BN, Esteso P, Hill CM, Zimmet JM, Bian W, Bursac N, Leong KW, Hare JM, Gearhart JD - PLoS ONE (2010)

Bottom Line: Differentiated CPCs formed functional electromechanical junctions with cardiomyocytes in vitro and conducted action potentials over cm-scale distances.Serial echocardiography and pressure-volume catheterization demonstrated attenuated ventricular dilatation and preserved left ventricular fractional shortening, systolic and diastolic function.Our results demonstrate that CPCs can engraft, differentiate, and preserve the functional output of the infarcted heart.

View Article: PubMed Central - PubMed

Affiliation: Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, United States of America. nc28@duke.edu

ABSTRACT
Stem cell transplantation holds great promise for the treatment of myocardial infarction injury. We recently described the embryonic stem cell-derived cardiac progenitor cells (CPCs) capable of differentiating into cardiomyocytes, vascular endothelium, and smooth muscle. In this study, we hypothesized that transplanted CPCs will preserve function of the infarcted heart by participating in both muscle replacement and neovascularization. Differentiated CPCs formed functional electromechanical junctions with cardiomyocytes in vitro and conducted action potentials over cm-scale distances. When transplanted into infarcted mouse hearts, CPCs engrafted long-term in the infarct zone and surrounding myocardium without causing teratomas or arrhythmias. The grafted cells differentiated into cross-striated cardiomyocytes forming gap junctions with the host cells, while also contributing to neovascularization. Serial echocardiography and pressure-volume catheterization demonstrated attenuated ventricular dilatation and preserved left ventricular fractional shortening, systolic and diastolic function. Our results demonstrate that CPCs can engraft, differentiate, and preserve the functional output of the infarcted heart.

Show MeSH

Related in: MedlinePlus

Derivation and in vitro characterization of mouse ESC-derived CPCs.ESCs were induced to differentiate through 3D aggregation and embryoid body formation. Clusters of CPCs, located within the embryoid body, expressed GFP under the control of the Nkx2-5 enhancer element (a–b). GFP(+) CPCs isolated by FACS sorting differentiated exclusively into cardiomyocytes (α-Actinin) while retaining GFP expression (c–d). The CPCs differentiated in vitro into cardiomyocytes (α-Actinin), smooth muscle (Smooth muscle actin), and endothelial cells (Von Willebrand factor) (e–f). Temporal quantitative RT-PCR analysis for the nascent mesoderm marker Brachyury, the cardiac progenitor marker Nkx2-5, and a cardiomyocyte marker Mhc6 (g). The percentage of GFP(+) CPCs was determined temporally following induction of mouse ESC differentiation (h).
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2902505&req=5

pone-0011536-g001: Derivation and in vitro characterization of mouse ESC-derived CPCs.ESCs were induced to differentiate through 3D aggregation and embryoid body formation. Clusters of CPCs, located within the embryoid body, expressed GFP under the control of the Nkx2-5 enhancer element (a–b). GFP(+) CPCs isolated by FACS sorting differentiated exclusively into cardiomyocytes (α-Actinin) while retaining GFP expression (c–d). The CPCs differentiated in vitro into cardiomyocytes (α-Actinin), smooth muscle (Smooth muscle actin), and endothelial cells (Von Willebrand factor) (e–f). Temporal quantitative RT-PCR analysis for the nascent mesoderm marker Brachyury, the cardiac progenitor marker Nkx2-5, and a cardiomyocyte marker Mhc6 (g). The percentage of GFP(+) CPCs was determined temporally following induction of mouse ESC differentiation (h).

Mentions: The mouse ESC lines D3 [15] and Rosa26 [16] were stably transfected with DNA constructs allowing the expression of the green fluorescent protein (GFP) under the control of the mouse cardiac specific enhancer element of the Nkx2-5 transcription factor as previously described [14]. Following isolation of 50 colonies (clonal) for each cell line, stably transfected clones were identified and further used based on their capacity to express GFP selectively in the spontaneously contracting cardiomyocyte cell clusters. Mouse ESCs were induced to differentiate in suspension forming aggregates termed embryoid bodies (EBs) and initial detection of GFP coincided with initiation of Nkx2-5 expression on differentiation day 5 (Figs. 1a, b).


Implantation of mouse embryonic stem cell-derived cardiac progenitor cells preserves function of infarcted murine hearts.

Christoforou N, Oskouei BN, Esteso P, Hill CM, Zimmet JM, Bian W, Bursac N, Leong KW, Hare JM, Gearhart JD - PLoS ONE (2010)

Derivation and in vitro characterization of mouse ESC-derived CPCs.ESCs were induced to differentiate through 3D aggregation and embryoid body formation. Clusters of CPCs, located within the embryoid body, expressed GFP under the control of the Nkx2-5 enhancer element (a–b). GFP(+) CPCs isolated by FACS sorting differentiated exclusively into cardiomyocytes (α-Actinin) while retaining GFP expression (c–d). The CPCs differentiated in vitro into cardiomyocytes (α-Actinin), smooth muscle (Smooth muscle actin), and endothelial cells (Von Willebrand factor) (e–f). Temporal quantitative RT-PCR analysis for the nascent mesoderm marker Brachyury, the cardiac progenitor marker Nkx2-5, and a cardiomyocyte marker Mhc6 (g). The percentage of GFP(+) CPCs was determined temporally following induction of mouse ESC differentiation (h).
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2902505&req=5

pone-0011536-g001: Derivation and in vitro characterization of mouse ESC-derived CPCs.ESCs were induced to differentiate through 3D aggregation and embryoid body formation. Clusters of CPCs, located within the embryoid body, expressed GFP under the control of the Nkx2-5 enhancer element (a–b). GFP(+) CPCs isolated by FACS sorting differentiated exclusively into cardiomyocytes (α-Actinin) while retaining GFP expression (c–d). The CPCs differentiated in vitro into cardiomyocytes (α-Actinin), smooth muscle (Smooth muscle actin), and endothelial cells (Von Willebrand factor) (e–f). Temporal quantitative RT-PCR analysis for the nascent mesoderm marker Brachyury, the cardiac progenitor marker Nkx2-5, and a cardiomyocyte marker Mhc6 (g). The percentage of GFP(+) CPCs was determined temporally following induction of mouse ESC differentiation (h).
Mentions: The mouse ESC lines D3 [15] and Rosa26 [16] were stably transfected with DNA constructs allowing the expression of the green fluorescent protein (GFP) under the control of the mouse cardiac specific enhancer element of the Nkx2-5 transcription factor as previously described [14]. Following isolation of 50 colonies (clonal) for each cell line, stably transfected clones were identified and further used based on their capacity to express GFP selectively in the spontaneously contracting cardiomyocyte cell clusters. Mouse ESCs were induced to differentiate in suspension forming aggregates termed embryoid bodies (EBs) and initial detection of GFP coincided with initiation of Nkx2-5 expression on differentiation day 5 (Figs. 1a, b).

Bottom Line: Differentiated CPCs formed functional electromechanical junctions with cardiomyocytes in vitro and conducted action potentials over cm-scale distances.Serial echocardiography and pressure-volume catheterization demonstrated attenuated ventricular dilatation and preserved left ventricular fractional shortening, systolic and diastolic function.Our results demonstrate that CPCs can engraft, differentiate, and preserve the functional output of the infarcted heart.

View Article: PubMed Central - PubMed

Affiliation: Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, United States of America. nc28@duke.edu

ABSTRACT
Stem cell transplantation holds great promise for the treatment of myocardial infarction injury. We recently described the embryonic stem cell-derived cardiac progenitor cells (CPCs) capable of differentiating into cardiomyocytes, vascular endothelium, and smooth muscle. In this study, we hypothesized that transplanted CPCs will preserve function of the infarcted heart by participating in both muscle replacement and neovascularization. Differentiated CPCs formed functional electromechanical junctions with cardiomyocytes in vitro and conducted action potentials over cm-scale distances. When transplanted into infarcted mouse hearts, CPCs engrafted long-term in the infarct zone and surrounding myocardium without causing teratomas or arrhythmias. The grafted cells differentiated into cross-striated cardiomyocytes forming gap junctions with the host cells, while also contributing to neovascularization. Serial echocardiography and pressure-volume catheterization demonstrated attenuated ventricular dilatation and preserved left ventricular fractional shortening, systolic and diastolic function. Our results demonstrate that CPCs can engraft, differentiate, and preserve the functional output of the infarcted heart.

Show MeSH
Related in: MedlinePlus