Limits...
Hexavalent Chromium Removal by a Paecilomyces sp. Fungal Strain Isolated from Environment.

Cárdenas-González JF, Acosta-Rodríguez I - Bioinorg Chem Appl (2010)

Bottom Line: A resistant and capable fungal strain in removing hexavalent chromium was isolated from an environment near of Chemical Science Faculty, located in the city of San Luis Potosí, Mexico.Strain resistance of the strain to high Cr (VI) concentrations and its ability to reduce chromium were studied.When it was incubated in minimal medium with glucose, another inexpensive commercial carbon source like unrefined and brown sugar or glycerol, in the presence of 50 mg/L of Cr (VI), the strain caused complete disappearance of Cr (VI), with the concomitant production of Cr (III) in the growth medium after 7 days of incubation, at 28 degrees C, pH 4.0, 100 rpm, and an inoculum of 38 mg of dry weight.

View Article: PubMed Central - PubMed

Affiliation: Laboratorio de Micología Experimental, Centro de Investigación y de Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Avenue Dr. Manuel Nava No. 6, Zona Universitaria, 78320 San Luis Potosí, SLP, Mexico.

ABSTRACT
A resistant and capable fungal strain in removing hexavalent chromium was isolated from an environment near of Chemical Science Faculty, located in the city of San Luis Potosí, Mexico. The strain was identified as Paecilomyces sp., by macro- and microscopic characteristics. Strain resistance of the strain to high Cr (VI) concentrations and its ability to reduce chromium were studied. When it was incubated in minimal medium with glucose, another inexpensive commercial carbon source like unrefined and brown sugar or glycerol, in the presence of 50 mg/L of Cr (VI), the strain caused complete disappearance of Cr (VI), with the concomitant production of Cr (III) in the growth medium after 7 days of incubation, at 28 degrees C, pH 4.0, 100 rpm, and an inoculum of 38 mg of dry weight. Decrease of Cr (VI) levels from industrial wastes was also induced by Paecilomyces biomass. These results indicate that reducing capacity of chromate resistant filamentous fungus Cr (VI) could be useful for the removal of Cr (VI) pollution.

No MeSH data available.


Related in: MedlinePlus

The effect of pH on Chromium remotion by Paecilomyces sp. 50 mg/L Cr (VI), 100 rpm, 28°C.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2902107&req=5

fig2: The effect of pH on Chromium remotion by Paecilomyces sp. 50 mg/L Cr (VI), 100 rpm, 28°C.

Mentions: Figure 2 shows the effect of varying pH (4.0, 5.3, and 7.0, maintained with 100 mmol/L citrate-phosphate buffer.) on the rate of Cr (VI) removal. The rate of chromium uptake and the extent of that capture were enhanced as the pH falls from 7.0 to 4.0. The maximum uptake was observed at pH 4.0 (96% at 7 days), 96%, Liu et al. and Bai and Abraham [18, 19] reported maximum removal at 100 mg/L Cr (VI) solution using Mucor racemosus and Rhizopus nigricans with pH optimum of 0.5–1.0 and 2.0, respectively, Sandana Mala et al. [20], at pH 5.0 for Cr (VI) with Aspergillus niger MTCC 2594, Rodríguez et al. [21], at pH 3.0–5.0 for Pb+2, Cd+2 and Cr+3  with the yeast Saccharomyces cerevisiae, Park et al. [22], at pH 1–5 for Cr (VI) with brown seaweed Ecklonia, Higuera cobos et al. [23], at pH 5.0 for Cr (VI) with the brown algae Sargassum sp, and Fukuda et al. [14], at pH 3.0 for Cr (VI) with Penicillium sp. In contrast to our observations, Prasenjit and Sumathi [24] reported maximum uptake of Cr (VI) at pH 7.0 with Aspergillus foetidus, Puranik and Paknikar [25] reported an enhanced uptake of lead, cadmium, and zinc, with a shift in pH from 2.0 to 7.0 using a Citrobacter strain, and a decrease at higher pH values. Al-Asheh and Duvnjak [26] also demonstrated a positive effect of increasing pH in the range 4.0–7.0 on Cr (III) uptake using Aspergillus carbonarius. At low pH, the negligible removal of chromium may be due to the competition between hydrogen (H+) and metal ions [27]. At higher pH (7.0), the increased metal removal may be due to the ionization of functional groups and the increase in the negative charge density on the cell surface. At alkaline pH values (8.0 or higher), a reduction in the solubility of metals may contribute to lower uptake rates.


Hexavalent Chromium Removal by a Paecilomyces sp. Fungal Strain Isolated from Environment.

Cárdenas-González JF, Acosta-Rodríguez I - Bioinorg Chem Appl (2010)

The effect of pH on Chromium remotion by Paecilomyces sp. 50 mg/L Cr (VI), 100 rpm, 28°C.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2902107&req=5

fig2: The effect of pH on Chromium remotion by Paecilomyces sp. 50 mg/L Cr (VI), 100 rpm, 28°C.
Mentions: Figure 2 shows the effect of varying pH (4.0, 5.3, and 7.0, maintained with 100 mmol/L citrate-phosphate buffer.) on the rate of Cr (VI) removal. The rate of chromium uptake and the extent of that capture were enhanced as the pH falls from 7.0 to 4.0. The maximum uptake was observed at pH 4.0 (96% at 7 days), 96%, Liu et al. and Bai and Abraham [18, 19] reported maximum removal at 100 mg/L Cr (VI) solution using Mucor racemosus and Rhizopus nigricans with pH optimum of 0.5–1.0 and 2.0, respectively, Sandana Mala et al. [20], at pH 5.0 for Cr (VI) with Aspergillus niger MTCC 2594, Rodríguez et al. [21], at pH 3.0–5.0 for Pb+2, Cd+2 and Cr+3  with the yeast Saccharomyces cerevisiae, Park et al. [22], at pH 1–5 for Cr (VI) with brown seaweed Ecklonia, Higuera cobos et al. [23], at pH 5.0 for Cr (VI) with the brown algae Sargassum sp, and Fukuda et al. [14], at pH 3.0 for Cr (VI) with Penicillium sp. In contrast to our observations, Prasenjit and Sumathi [24] reported maximum uptake of Cr (VI) at pH 7.0 with Aspergillus foetidus, Puranik and Paknikar [25] reported an enhanced uptake of lead, cadmium, and zinc, with a shift in pH from 2.0 to 7.0 using a Citrobacter strain, and a decrease at higher pH values. Al-Asheh and Duvnjak [26] also demonstrated a positive effect of increasing pH in the range 4.0–7.0 on Cr (III) uptake using Aspergillus carbonarius. At low pH, the negligible removal of chromium may be due to the competition between hydrogen (H+) and metal ions [27]. At higher pH (7.0), the increased metal removal may be due to the ionization of functional groups and the increase in the negative charge density on the cell surface. At alkaline pH values (8.0 or higher), a reduction in the solubility of metals may contribute to lower uptake rates.

Bottom Line: A resistant and capable fungal strain in removing hexavalent chromium was isolated from an environment near of Chemical Science Faculty, located in the city of San Luis Potosí, Mexico.Strain resistance of the strain to high Cr (VI) concentrations and its ability to reduce chromium were studied.When it was incubated in minimal medium with glucose, another inexpensive commercial carbon source like unrefined and brown sugar or glycerol, in the presence of 50 mg/L of Cr (VI), the strain caused complete disappearance of Cr (VI), with the concomitant production of Cr (III) in the growth medium after 7 days of incubation, at 28 degrees C, pH 4.0, 100 rpm, and an inoculum of 38 mg of dry weight.

View Article: PubMed Central - PubMed

Affiliation: Laboratorio de Micología Experimental, Centro de Investigación y de Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Avenue Dr. Manuel Nava No. 6, Zona Universitaria, 78320 San Luis Potosí, SLP, Mexico.

ABSTRACT
A resistant and capable fungal strain in removing hexavalent chromium was isolated from an environment near of Chemical Science Faculty, located in the city of San Luis Potosí, Mexico. The strain was identified as Paecilomyces sp., by macro- and microscopic characteristics. Strain resistance of the strain to high Cr (VI) concentrations and its ability to reduce chromium were studied. When it was incubated in minimal medium with glucose, another inexpensive commercial carbon source like unrefined and brown sugar or glycerol, in the presence of 50 mg/L of Cr (VI), the strain caused complete disappearance of Cr (VI), with the concomitant production of Cr (III) in the growth medium after 7 days of incubation, at 28 degrees C, pH 4.0, 100 rpm, and an inoculum of 38 mg of dry weight. Decrease of Cr (VI) levels from industrial wastes was also induced by Paecilomyces biomass. These results indicate that reducing capacity of chromate resistant filamentous fungus Cr (VI) could be useful for the removal of Cr (VI) pollution.

No MeSH data available.


Related in: MedlinePlus