Limits...
Evaluation of pyridoacridine alkaloids in a zebrafish phenotypic assay.

Wei X, Bugni TS, Harper MK, Sandoval IT, Manos EJ, Swift J, Van Wagoner RM, Jones DA, Ireland CM - Mar Drugs (2010)

Bottom Line: Structures were assigned on the basis of extensive 1D and 2D NMR studies as well as analysis by HRESIMS.Amphimedine (4) was the only compound that caused a phenotype in zebrafish embryos at 30 muM.No phenotype other than death was observed for compounds 1-3, 5, 6.

View Article: PubMed Central - PubMed

Affiliation: Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA. xiaomei.wei@pharm.utah.edu

ABSTRACT
Three new minor components, the pyridoacridine alkaloids 1-hydroxy-deoxyamphimedine (1), 3-hydroxy-deoxyamphimedine (2), debromopetrosamine (3), and three known compounds, amphimedine (4), neoamphimedine (5) and deoxyamphimedine (6), have been isolated from the sponge Xestospongia cf. carbonaria, collected in Palau. Structures were assigned on the basis of extensive 1D and 2D NMR studies as well as analysis by HRESIMS. Compounds 1-6 were evaluated in a zebrafish phenotype-based assay. Amphimedine (4) was the only compound that caused a phenotype in zebrafish embryos at 30 muM. No phenotype other than death was observed for compounds 1-3, 5, 6.

Show MeSH

Related in: MedlinePlus

Additional developmental defects resulting from amphimedine treatment. In situ hybridization was performed on control (A, C, E, G, I, K, M, O, Q) and treated (B, D, F, H, J, L, N, P, R) embryos harvested at 24 h (ntl, hnf6, myoD, dlx2, otx2, fgf8, zash1a, id6) or 48 h (crx) post treatment. Scale bars, 50 μM. not, notochord; sc, spinal cord; som, somites; pa, pharyngeal arches; fb, forebrain; mb, midbrain; mhb, mid/hindbrain boundary; hb, hindbrain; pfb, pectoral fin bud; e, eye.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC2901824&req=5

f3-marinedrugs-08-01769: Additional developmental defects resulting from amphimedine treatment. In situ hybridization was performed on control (A, C, E, G, I, K, M, O, Q) and treated (B, D, F, H, J, L, N, P, R) embryos harvested at 24 h (ntl, hnf6, myoD, dlx2, otx2, fgf8, zash1a, id6) or 48 h (crx) post treatment. Scale bars, 50 μM. not, notochord; sc, spinal cord; som, somites; pa, pharyngeal arches; fb, forebrain; mb, midbrain; mhb, mid/hindbrain boundary; hb, hindbrain; pfb, pectoral fin bud; e, eye.

Mentions: Of the pure compounds (1–6) isolated from this sponge, only amphimedine (4) showed a phenotype in the zebrafish assay at 30 μM. Embryos exposed to amphimedine (4) exhibited necrosis, pericardial edema and an enlarged yolk with thin extension (Figure 2B, D). The embryos also appeared short and grainy, with an extended heart, weak heartbeat, no circulation, and irregular curvature of the tail (Figure 2B, D). In order to further characterize the phenotypes induced by amphimedine (4), a series of in situ hybridization experiments were carried out that utilized digoxigenin-labeled antisense RNA probes against various regulatory genes involved in development and differentiation. These studies enabled selective high-contrast imaging of various organs. Treated embryos showed wavy notochord, spinal cord and abnormally shaped somites after imaging of ntl, hnf6 and myoD, respectively (Figure 3B, D, F). They also lack pectoral fin buds, have slightly smaller eyes and shortened brain regions as shown by the imaging of known brain markers such as dlx2, otx2, fgf8 and zash1a (Figure 3H, J, L, N, P, R). The variety and severity of phenotypic responses induced by amphimedine (4) suggest interference with a fundamental process in embryonic development or action against multiple systems. Unfortunately, at this time it is not possible to infer from the pattern of activities observed which specific targets amphimedine (4) might be modulating.


Evaluation of pyridoacridine alkaloids in a zebrafish phenotypic assay.

Wei X, Bugni TS, Harper MK, Sandoval IT, Manos EJ, Swift J, Van Wagoner RM, Jones DA, Ireland CM - Mar Drugs (2010)

Additional developmental defects resulting from amphimedine treatment. In situ hybridization was performed on control (A, C, E, G, I, K, M, O, Q) and treated (B, D, F, H, J, L, N, P, R) embryos harvested at 24 h (ntl, hnf6, myoD, dlx2, otx2, fgf8, zash1a, id6) or 48 h (crx) post treatment. Scale bars, 50 μM. not, notochord; sc, spinal cord; som, somites; pa, pharyngeal arches; fb, forebrain; mb, midbrain; mhb, mid/hindbrain boundary; hb, hindbrain; pfb, pectoral fin bud; e, eye.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC2901824&req=5

f3-marinedrugs-08-01769: Additional developmental defects resulting from amphimedine treatment. In situ hybridization was performed on control (A, C, E, G, I, K, M, O, Q) and treated (B, D, F, H, J, L, N, P, R) embryos harvested at 24 h (ntl, hnf6, myoD, dlx2, otx2, fgf8, zash1a, id6) or 48 h (crx) post treatment. Scale bars, 50 μM. not, notochord; sc, spinal cord; som, somites; pa, pharyngeal arches; fb, forebrain; mb, midbrain; mhb, mid/hindbrain boundary; hb, hindbrain; pfb, pectoral fin bud; e, eye.
Mentions: Of the pure compounds (1–6) isolated from this sponge, only amphimedine (4) showed a phenotype in the zebrafish assay at 30 μM. Embryos exposed to amphimedine (4) exhibited necrosis, pericardial edema and an enlarged yolk with thin extension (Figure 2B, D). The embryos also appeared short and grainy, with an extended heart, weak heartbeat, no circulation, and irregular curvature of the tail (Figure 2B, D). In order to further characterize the phenotypes induced by amphimedine (4), a series of in situ hybridization experiments were carried out that utilized digoxigenin-labeled antisense RNA probes against various regulatory genes involved in development and differentiation. These studies enabled selective high-contrast imaging of various organs. Treated embryos showed wavy notochord, spinal cord and abnormally shaped somites after imaging of ntl, hnf6 and myoD, respectively (Figure 3B, D, F). They also lack pectoral fin buds, have slightly smaller eyes and shortened brain regions as shown by the imaging of known brain markers such as dlx2, otx2, fgf8 and zash1a (Figure 3H, J, L, N, P, R). The variety and severity of phenotypic responses induced by amphimedine (4) suggest interference with a fundamental process in embryonic development or action against multiple systems. Unfortunately, at this time it is not possible to infer from the pattern of activities observed which specific targets amphimedine (4) might be modulating.

Bottom Line: Structures were assigned on the basis of extensive 1D and 2D NMR studies as well as analysis by HRESIMS.Amphimedine (4) was the only compound that caused a phenotype in zebrafish embryos at 30 muM.No phenotype other than death was observed for compounds 1-3, 5, 6.

View Article: PubMed Central - PubMed

Affiliation: Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA. xiaomei.wei@pharm.utah.edu

ABSTRACT
Three new minor components, the pyridoacridine alkaloids 1-hydroxy-deoxyamphimedine (1), 3-hydroxy-deoxyamphimedine (2), debromopetrosamine (3), and three known compounds, amphimedine (4), neoamphimedine (5) and deoxyamphimedine (6), have been isolated from the sponge Xestospongia cf. carbonaria, collected in Palau. Structures were assigned on the basis of extensive 1D and 2D NMR studies as well as analysis by HRESIMS. Compounds 1-6 were evaluated in a zebrafish phenotype-based assay. Amphimedine (4) was the only compound that caused a phenotype in zebrafish embryos at 30 muM. No phenotype other than death was observed for compounds 1-3, 5, 6.

Show MeSH
Related in: MedlinePlus