Limits...
Influence of virtual reality soccer game on walking performance in robotic assisted gait training for children.

Brütsch K, Schuler T, Koenig A, Zimmerli L, -Koeneke SM, Lünenburger L, Riener R, Jäncke L, Meyer-Heim A - J Neuroeng Rehabil (2010)

Bottom Line: The mixed ANOVA revealed significant main effects for the factor CONDITIONS (p < 0.001) and a significant interaction CONDITIONS x GROUP (p = 0.01).Tests of between-subjects effects showed no significant main effect for the GROUP (p = 0.592).The VR scenario used here induces an immediate effect on motor output to a similar degree as the effect resulting from verbal instructions by the therapists.

View Article: PubMed Central - HTML - PubMed

Affiliation: Institute of Psychology, Division Neuropsychology, University of Zurich, Switzerland. k.bruetsch@psychologie.uzh.ch

ABSTRACT

Background: Virtual reality (VR) offers powerful therapy options within a functional, purposeful and motivating context. Several studies have shown that patients' motivation plays a crucial role in determining therapy outcome. However, few studies have demonstrated the potential of VR in pediatric rehabilitation. Therefore, we developed a VR-based soccer scenario, which provided interactive elements to engage patients during robotic assisted treadmill training (RAGT). The aim of this study was to compare the immediate effect of different supportive conditions (VR versus non-VR conditions) on motor output in patients and healthy control children during training with the driven gait orthosis Lokomat*.

Methods: A total of 18 children (ten patients with different neurological gait disorders, eight healthy controls) took part in this study. They were instructed to walk on the Lokomat in four different, randomly-presented conditions: (1) walk normally without supporting assistance, (2) with therapists' instructions to promote active participation, (3) with VR as a motivating tool to walk actively and (4) with the VR tool combined with therapists' instructions. The Lokomat gait orthosis is equipped with sensors at hip and knee joint to measure man-machine interaction forces. Additionally, subjects' acceptance of the RAGT with VR was assessed using a questionnaire.

Results: The mixed ANOVA revealed significant main effects for the factor CONDITIONS (p < 0.001) and a significant interaction CONDITIONS x GROUP (p = 0.01). Tests of between-subjects effects showed no significant main effect for the GROUP (p = 0.592). Active participation in patients and control children increased significantly when supported and motivated either by therapists' instructions or by a VR scenario compared with the baseline measurement "normal walking" (p < 0.001).

Conclusions: The VR scenario used here induces an immediate effect on motor output to a similar degree as the effect resulting from verbal instructions by the therapists. Further research needs to focus on the implementation of interactive design elements, which keep motivation high across and beyond RAGT sessions, especially in pediatric rehabilitation.

Show MeSH

Related in: MedlinePlus

The two different experimental schedule structures. Showing the two different schematic time schedules for the study presented with all conditions. THER: Therapeutic instructions. VR: Virtual reality soccer scenario. VR + THER: Combination of VR and additional therapeutic instructions.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2877051&req=5

Figure 3: The two different experimental schedule structures. Showing the two different schematic time schedules for the study presented with all conditions. THER: Therapeutic instructions. VR: Virtual reality soccer scenario. VR + THER: Combination of VR and additional therapeutic instructions.

Mentions: Participants were instructed to walk on the Lokomat under four randomly-presented conditions: (1) normal walking without supporting assistance from the therapist (BASELINE), (2) with therapists' standardized instructions to promote active participation (THER), (3) use of VR as a motivating tool to walk actively (VR), and (4) use of the VR tool combined with therapists' standardized instructions (VR + THER). The measured motor output was quantified by a weighted sum of interaction forces between patient and Lokomat which is computed for each swing and stance phase for both hip and knee joints [21]. The weighting functions were defined for each part of the gait cycle, such that the resulting biofeedback values increased for therapeutically desirable movements, e.g. knee flexion for early swing phase. All patients and healthy children were randomly assigned to two test schedules with balanced age distribution to avoid fatigue effect. After being fitted into the driven gait orthosis and before starting the first condition, children walked approximately five minutes in the Lokomat to familiarize themselves with the device. Each schedule began with and included in total three BASELINE measurements. Each walking condition lasted two minutes (Figure 3). During all conditions, children walked at their own comfortable speed (average for children's legs was 1.5 km/h, for teenager's legs 1.7 km/h) with 30% body weight support and foot-lifting straps, which assisted ankle dorsiflexion for adequate toe-clearance during the swing phase. All instructions given by the therapist were standardized for all conditions.


Influence of virtual reality soccer game on walking performance in robotic assisted gait training for children.

Brütsch K, Schuler T, Koenig A, Zimmerli L, -Koeneke SM, Lünenburger L, Riener R, Jäncke L, Meyer-Heim A - J Neuroeng Rehabil (2010)

The two different experimental schedule structures. Showing the two different schematic time schedules for the study presented with all conditions. THER: Therapeutic instructions. VR: Virtual reality soccer scenario. VR + THER: Combination of VR and additional therapeutic instructions.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2877051&req=5

Figure 3: The two different experimental schedule structures. Showing the two different schematic time schedules for the study presented with all conditions. THER: Therapeutic instructions. VR: Virtual reality soccer scenario. VR + THER: Combination of VR and additional therapeutic instructions.
Mentions: Participants were instructed to walk on the Lokomat under four randomly-presented conditions: (1) normal walking without supporting assistance from the therapist (BASELINE), (2) with therapists' standardized instructions to promote active participation (THER), (3) use of VR as a motivating tool to walk actively (VR), and (4) use of the VR tool combined with therapists' standardized instructions (VR + THER). The measured motor output was quantified by a weighted sum of interaction forces between patient and Lokomat which is computed for each swing and stance phase for both hip and knee joints [21]. The weighting functions were defined for each part of the gait cycle, such that the resulting biofeedback values increased for therapeutically desirable movements, e.g. knee flexion for early swing phase. All patients and healthy children were randomly assigned to two test schedules with balanced age distribution to avoid fatigue effect. After being fitted into the driven gait orthosis and before starting the first condition, children walked approximately five minutes in the Lokomat to familiarize themselves with the device. Each schedule began with and included in total three BASELINE measurements. Each walking condition lasted two minutes (Figure 3). During all conditions, children walked at their own comfortable speed (average for children's legs was 1.5 km/h, for teenager's legs 1.7 km/h) with 30% body weight support and foot-lifting straps, which assisted ankle dorsiflexion for adequate toe-clearance during the swing phase. All instructions given by the therapist were standardized for all conditions.

Bottom Line: The mixed ANOVA revealed significant main effects for the factor CONDITIONS (p < 0.001) and a significant interaction CONDITIONS x GROUP (p = 0.01).Tests of between-subjects effects showed no significant main effect for the GROUP (p = 0.592).The VR scenario used here induces an immediate effect on motor output to a similar degree as the effect resulting from verbal instructions by the therapists.

View Article: PubMed Central - HTML - PubMed

Affiliation: Institute of Psychology, Division Neuropsychology, University of Zurich, Switzerland. k.bruetsch@psychologie.uzh.ch

ABSTRACT

Background: Virtual reality (VR) offers powerful therapy options within a functional, purposeful and motivating context. Several studies have shown that patients' motivation plays a crucial role in determining therapy outcome. However, few studies have demonstrated the potential of VR in pediatric rehabilitation. Therefore, we developed a VR-based soccer scenario, which provided interactive elements to engage patients during robotic assisted treadmill training (RAGT). The aim of this study was to compare the immediate effect of different supportive conditions (VR versus non-VR conditions) on motor output in patients and healthy control children during training with the driven gait orthosis Lokomat*.

Methods: A total of 18 children (ten patients with different neurological gait disorders, eight healthy controls) took part in this study. They were instructed to walk on the Lokomat in four different, randomly-presented conditions: (1) walk normally without supporting assistance, (2) with therapists' instructions to promote active participation, (3) with VR as a motivating tool to walk actively and (4) with the VR tool combined with therapists' instructions. The Lokomat gait orthosis is equipped with sensors at hip and knee joint to measure man-machine interaction forces. Additionally, subjects' acceptance of the RAGT with VR was assessed using a questionnaire.

Results: The mixed ANOVA revealed significant main effects for the factor CONDITIONS (p < 0.001) and a significant interaction CONDITIONS x GROUP (p = 0.01). Tests of between-subjects effects showed no significant main effect for the GROUP (p = 0.592). Active participation in patients and control children increased significantly when supported and motivated either by therapists' instructions or by a VR scenario compared with the baseline measurement "normal walking" (p < 0.001).

Conclusions: The VR scenario used here induces an immediate effect on motor output to a similar degree as the effect resulting from verbal instructions by the therapists. Further research needs to focus on the implementation of interactive design elements, which keep motivation high across and beyond RAGT sessions, especially in pediatric rehabilitation.

Show MeSH
Related in: MedlinePlus