Limits...
Enhancement of ATRA-induced differentiation of neuroblastoma cells with LOX/COX inhibitors: an expression profiling study.

Chlapek P, Redova M, Zitterbart K, Hermanova M, Sterba J, Veselska R - J. Exp. Clin. Cancer Res. (2010)

Bottom Line: Cluster analyses of the changes in gene expression showed the concentration-dependent increase in genes known to be involved in the process of retinoid-induced neuronal differentiation, especially in cytoskeleton remodeling.Furthermore, we also found overexpression of some genes in the same cell line (SK-N-BE(2) or SH-SY5Y) after combined treatment with both ATRA and CA, or ATRA and CX.Finally, we also detected that gene expression was changed after treatment with the same inhibitor (CA or CX) in combination with ATRA in both cell lines.

View Article: PubMed Central - HTML - PubMed

Affiliation: Laboratory of Tumor Biology and Genetics, Department of Experimental Biology, School of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic.

ABSTRACT

Background: We performed expression profiling of two neuroblastoma cell lines, SK-N-BE(2) and SH-SY5Y, after combined treatment with all-trans retinoic acid (ATRA) and inhibitors of lipoxygenases (LOX) and cyclooxygenases (COX). This study is a continuation of our previous work confirming the possibility of enhancing ATRA-induced cell differentiation in these cell lines by the application of LOX/COX inhibitors and brings more detailed information concerning the mechanisms of the enhancement of ATRA-induced differentiation of neuroblastoma cells.

Methods: Caffeic acid, as an inhibitor of 5-lipoxygenase, and celecoxib, as an inhibitor on cyclooxygenase-2, were used in this study. Expression profiling was performed using Human Cancer Oligo GEArray membranes that cover 440 cancer-related genes.

Results: Cluster analyses of the changes in gene expression showed the concentration-dependent increase in genes known to be involved in the process of retinoid-induced neuronal differentiation, especially in cytoskeleton remodeling. These changes were detected in both cell lines, and they were independent of the type of specific inhibitors, suggesting a common mechanism of ATRA-induced differentiation enhancement. Furthermore, we also found overexpression of some genes in the same cell line (SK-N-BE(2) or SH-SY5Y) after combined treatment with both ATRA and CA, or ATRA and CX. Finally, we also detected that gene expression was changed after treatment with the same inhibitor (CA or CX) in combination with ATRA in both cell lines.

Conclusions: Obtained results confirmed our initial hypothesis of the common mechanism of enhancement in ATRA-induced cell differentiation via inhibition of arachidonic acid metabolic pathway.

Show MeSH

Related in: MedlinePlus

Results of gene cluster analysis. Genes were clustered according to type of changes in expression in particular cell lines (SK-N-BE(2) or SH-SY5Y) after combined treatment with ATRA and particular inhibitors (CA or CX). ATRA was applied in concentrations of 1 or 10 μM (1 ATRA, 10 ATRA); CA in concentrations of 13 and 52 μM (13 CA, 52 CA), and CX in concentrations of 10 and 50 μM (10 CX, 50 CX). The green color at the farthest left end of the color scale corresponds to the minimal value; the red color at the farthest right end of the color scale corresponds to the maximal value; and the black color in the middle of the color scale corresponds to the average value. Each of the other values corresponds to a certain color according to its magnitude. The colors are assigned according to the value of the particular gene expression in all samples in the respective experimental variant (I, II, III or IV).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2874523&req=5

Figure 1: Results of gene cluster analysis. Genes were clustered according to type of changes in expression in particular cell lines (SK-N-BE(2) or SH-SY5Y) after combined treatment with ATRA and particular inhibitors (CA or CX). ATRA was applied in concentrations of 1 or 10 μM (1 ATRA, 10 ATRA); CA in concentrations of 13 and 52 μM (13 CA, 52 CA), and CX in concentrations of 10 and 50 μM (10 CX, 50 CX). The green color at the farthest left end of the color scale corresponds to the minimal value; the red color at the farthest right end of the color scale corresponds to the maximal value; and the black color in the middle of the color scale corresponds to the average value. Each of the other values corresponds to a certain color according to its magnitude. The colors are assigned according to the value of the particular gene expression in all samples in the respective experimental variant (I, II, III or IV).

Mentions: We performed the comparison of cluster analyses of achieved data to detect genes or gene groups with the same types of changes in their expression (Figure 1, Table 1). After combined treatment with ATRA and CA, we detected 50 genes with changed expression in SK-N-BE(2) cells and 91 genes with changed expression in SH-SY5Y cells. As a result of combined treatment with ATRA and CX, 98 genes with changed expression were identified in SK-N-BE(2) cells and 66 genes with changed expression were identified in SH-SY5Y cells. We analyzed these data from two different viewpoints.


Enhancement of ATRA-induced differentiation of neuroblastoma cells with LOX/COX inhibitors: an expression profiling study.

Chlapek P, Redova M, Zitterbart K, Hermanova M, Sterba J, Veselska R - J. Exp. Clin. Cancer Res. (2010)

Results of gene cluster analysis. Genes were clustered according to type of changes in expression in particular cell lines (SK-N-BE(2) or SH-SY5Y) after combined treatment with ATRA and particular inhibitors (CA or CX). ATRA was applied in concentrations of 1 or 10 μM (1 ATRA, 10 ATRA); CA in concentrations of 13 and 52 μM (13 CA, 52 CA), and CX in concentrations of 10 and 50 μM (10 CX, 50 CX). The green color at the farthest left end of the color scale corresponds to the minimal value; the red color at the farthest right end of the color scale corresponds to the maximal value; and the black color in the middle of the color scale corresponds to the average value. Each of the other values corresponds to a certain color according to its magnitude. The colors are assigned according to the value of the particular gene expression in all samples in the respective experimental variant (I, II, III or IV).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2874523&req=5

Figure 1: Results of gene cluster analysis. Genes were clustered according to type of changes in expression in particular cell lines (SK-N-BE(2) or SH-SY5Y) after combined treatment with ATRA and particular inhibitors (CA or CX). ATRA was applied in concentrations of 1 or 10 μM (1 ATRA, 10 ATRA); CA in concentrations of 13 and 52 μM (13 CA, 52 CA), and CX in concentrations of 10 and 50 μM (10 CX, 50 CX). The green color at the farthest left end of the color scale corresponds to the minimal value; the red color at the farthest right end of the color scale corresponds to the maximal value; and the black color in the middle of the color scale corresponds to the average value. Each of the other values corresponds to a certain color according to its magnitude. The colors are assigned according to the value of the particular gene expression in all samples in the respective experimental variant (I, II, III or IV).
Mentions: We performed the comparison of cluster analyses of achieved data to detect genes or gene groups with the same types of changes in their expression (Figure 1, Table 1). After combined treatment with ATRA and CA, we detected 50 genes with changed expression in SK-N-BE(2) cells and 91 genes with changed expression in SH-SY5Y cells. As a result of combined treatment with ATRA and CX, 98 genes with changed expression were identified in SK-N-BE(2) cells and 66 genes with changed expression were identified in SH-SY5Y cells. We analyzed these data from two different viewpoints.

Bottom Line: Cluster analyses of the changes in gene expression showed the concentration-dependent increase in genes known to be involved in the process of retinoid-induced neuronal differentiation, especially in cytoskeleton remodeling.Furthermore, we also found overexpression of some genes in the same cell line (SK-N-BE(2) or SH-SY5Y) after combined treatment with both ATRA and CA, or ATRA and CX.Finally, we also detected that gene expression was changed after treatment with the same inhibitor (CA or CX) in combination with ATRA in both cell lines.

View Article: PubMed Central - HTML - PubMed

Affiliation: Laboratory of Tumor Biology and Genetics, Department of Experimental Biology, School of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic.

ABSTRACT

Background: We performed expression profiling of two neuroblastoma cell lines, SK-N-BE(2) and SH-SY5Y, after combined treatment with all-trans retinoic acid (ATRA) and inhibitors of lipoxygenases (LOX) and cyclooxygenases (COX). This study is a continuation of our previous work confirming the possibility of enhancing ATRA-induced cell differentiation in these cell lines by the application of LOX/COX inhibitors and brings more detailed information concerning the mechanisms of the enhancement of ATRA-induced differentiation of neuroblastoma cells.

Methods: Caffeic acid, as an inhibitor of 5-lipoxygenase, and celecoxib, as an inhibitor on cyclooxygenase-2, were used in this study. Expression profiling was performed using Human Cancer Oligo GEArray membranes that cover 440 cancer-related genes.

Results: Cluster analyses of the changes in gene expression showed the concentration-dependent increase in genes known to be involved in the process of retinoid-induced neuronal differentiation, especially in cytoskeleton remodeling. These changes were detected in both cell lines, and they were independent of the type of specific inhibitors, suggesting a common mechanism of ATRA-induced differentiation enhancement. Furthermore, we also found overexpression of some genes in the same cell line (SK-N-BE(2) or SH-SY5Y) after combined treatment with both ATRA and CA, or ATRA and CX. Finally, we also detected that gene expression was changed after treatment with the same inhibitor (CA or CX) in combination with ATRA in both cell lines.

Conclusions: Obtained results confirmed our initial hypothesis of the common mechanism of enhancement in ATRA-induced cell differentiation via inhibition of arachidonic acid metabolic pathway.

Show MeSH
Related in: MedlinePlus