Limits...
The human nasal microbiota and Staphylococcus aureus carriage.

Frank DN, Feazel LM, Bessesen MT, Price CS, Janoff EN, Pace NR - PLoS ONE (2010)

Bottom Line: Moreover, within the inpatient population S. aureus colonization was negatively correlated with the abundances of several microbial groups, including S. epidermidis (p = 0.004).The nares environment is colonized by a temporally stable microbiota that is distinct from other regions of the integument.Negative association between S. aureus, S. epidermidis, and other groups suggests microbial competition during colonization of the nares, a finding that could be exploited to limit S. aureus colonization.

View Article: PubMed Central - PubMed

Affiliation: Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado, United States of America.

ABSTRACT

Background: Colonization of humans with Staphylococcus aureus is a critical prerequisite of subsequent clinical infection of the skin, blood, lung, heart and other deep tissues. S. aureus persistently or intermittently colonizes the nares of approximately 50% of healthy adults, whereas approximately 50% of the general population is rarely or never colonized by this pathogen. Because microbial consortia within the nasal cavity may be an important determinant of S. aureus colonization we determined the composition and dynamics of the nasal microbiota and correlated specific microorganisms with S. aureus colonization.

Methodology/principal findings: Nasal specimens were collected longitudinally from five healthy adults and a cross-section of hospitalized patients (26 S. aureus carriers and 16 non-carriers). Culture-independent analysis of 16S rRNA sequences revealed that the nasal microbiota of healthy subjects consists primarily of members of the phylum Actinobacteria (e.g., Propionibacterium spp. and Corynebacterium spp.), with proportionally less representation of other phyla, including Firmicutes (e.g., Staphylococcus spp.) and Proteobacteria (e.g. Enterobacter spp). In contrast, inpatient nasal microbiotas were enriched in S. aureus or Staphylococcus epidermidis and diminished in several actinobacterial groups, most notably Propionibacterium acnes. Moreover, within the inpatient population S. aureus colonization was negatively correlated with the abundances of several microbial groups, including S. epidermidis (p = 0.004).

Conclusions/significance: The nares environment is colonized by a temporally stable microbiota that is distinct from other regions of the integument. Negative association between S. aureus, S. epidermidis, and other groups suggests microbial competition during colonization of the nares, a finding that could be exploited to limit S. aureus colonization.

Show MeSH

Related in: MedlinePlus

Distinct microbial populations in healthy and hospitalized adults.Pie charts depict average frequencies of dominant microorganisms in the anterior nares of healthy adults and inpatients, classified by S. aureus carriage status. Arrows outline possible pathways by which microbial populations develop in hospitalized patients. “Other” represents less abundant taxa, such as Proteobacteria and Firmicutes other than S. aureus and S. epidermidis.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2871794&req=5

pone-0010598-g010: Distinct microbial populations in healthy and hospitalized adults.Pie charts depict average frequencies of dominant microorganisms in the anterior nares of healthy adults and inpatients, classified by S. aureus carriage status. Arrows outline possible pathways by which microbial populations develop in hospitalized patients. “Other” represents less abundant taxa, such as Proteobacteria and Firmicutes other than S. aureus and S. epidermidis.

Mentions: The nares microbiotas of most hospitalized patients differed substantially from those of the healthy cohort in the kinds and diversities of prevalent microbes. To our knowledge, this is the first characterization of the human nasal microbiota in a clinical context. Our results broadly define three types of microbial populations within the nasal cavity (Fig. 10). First, healthy adults and a subset of inpatients harbored nares communities dominated by Actinobacteria (mainly Propionibacterium and Corynebacterium spp.), with fewer staphylococci. Second, in the majority of S. aureus-colonized inpatients S. aureus was the dominant nasal species, with concomitant reductions in the prevalences of Actinobacteria. Third, many S. aureus non-colonized patients carried S. epidermidis as the dominant species, accompanied by reduced levels of Actinobacteria. Thus in this study, S. aureus carriage was negatively associated with a variety of other nares-associated microbial species, most significantly S. epidermidis and P. acnes (Table 1). These results are consistent with published reports that selected organisms can interfere with S. aureus colonization [26], [29]. However, the culture-independent, high-throughput strategy utilized in this study permitted detailed characterization of whole populations of nasal microorganisms, rather than individual species, in relation to S. aureus occurrence.


The human nasal microbiota and Staphylococcus aureus carriage.

Frank DN, Feazel LM, Bessesen MT, Price CS, Janoff EN, Pace NR - PLoS ONE (2010)

Distinct microbial populations in healthy and hospitalized adults.Pie charts depict average frequencies of dominant microorganisms in the anterior nares of healthy adults and inpatients, classified by S. aureus carriage status. Arrows outline possible pathways by which microbial populations develop in hospitalized patients. “Other” represents less abundant taxa, such as Proteobacteria and Firmicutes other than S. aureus and S. epidermidis.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2871794&req=5

pone-0010598-g010: Distinct microbial populations in healthy and hospitalized adults.Pie charts depict average frequencies of dominant microorganisms in the anterior nares of healthy adults and inpatients, classified by S. aureus carriage status. Arrows outline possible pathways by which microbial populations develop in hospitalized patients. “Other” represents less abundant taxa, such as Proteobacteria and Firmicutes other than S. aureus and S. epidermidis.
Mentions: The nares microbiotas of most hospitalized patients differed substantially from those of the healthy cohort in the kinds and diversities of prevalent microbes. To our knowledge, this is the first characterization of the human nasal microbiota in a clinical context. Our results broadly define three types of microbial populations within the nasal cavity (Fig. 10). First, healthy adults and a subset of inpatients harbored nares communities dominated by Actinobacteria (mainly Propionibacterium and Corynebacterium spp.), with fewer staphylococci. Second, in the majority of S. aureus-colonized inpatients S. aureus was the dominant nasal species, with concomitant reductions in the prevalences of Actinobacteria. Third, many S. aureus non-colonized patients carried S. epidermidis as the dominant species, accompanied by reduced levels of Actinobacteria. Thus in this study, S. aureus carriage was negatively associated with a variety of other nares-associated microbial species, most significantly S. epidermidis and P. acnes (Table 1). These results are consistent with published reports that selected organisms can interfere with S. aureus colonization [26], [29]. However, the culture-independent, high-throughput strategy utilized in this study permitted detailed characterization of whole populations of nasal microorganisms, rather than individual species, in relation to S. aureus occurrence.

Bottom Line: Moreover, within the inpatient population S. aureus colonization was negatively correlated with the abundances of several microbial groups, including S. epidermidis (p = 0.004).The nares environment is colonized by a temporally stable microbiota that is distinct from other regions of the integument.Negative association between S. aureus, S. epidermidis, and other groups suggests microbial competition during colonization of the nares, a finding that could be exploited to limit S. aureus colonization.

View Article: PubMed Central - PubMed

Affiliation: Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado, United States of America.

ABSTRACT

Background: Colonization of humans with Staphylococcus aureus is a critical prerequisite of subsequent clinical infection of the skin, blood, lung, heart and other deep tissues. S. aureus persistently or intermittently colonizes the nares of approximately 50% of healthy adults, whereas approximately 50% of the general population is rarely or never colonized by this pathogen. Because microbial consortia within the nasal cavity may be an important determinant of S. aureus colonization we determined the composition and dynamics of the nasal microbiota and correlated specific microorganisms with S. aureus colonization.

Methodology/principal findings: Nasal specimens were collected longitudinally from five healthy adults and a cross-section of hospitalized patients (26 S. aureus carriers and 16 non-carriers). Culture-independent analysis of 16S rRNA sequences revealed that the nasal microbiota of healthy subjects consists primarily of members of the phylum Actinobacteria (e.g., Propionibacterium spp. and Corynebacterium spp.), with proportionally less representation of other phyla, including Firmicutes (e.g., Staphylococcus spp.) and Proteobacteria (e.g. Enterobacter spp). In contrast, inpatient nasal microbiotas were enriched in S. aureus or Staphylococcus epidermidis and diminished in several actinobacterial groups, most notably Propionibacterium acnes. Moreover, within the inpatient population S. aureus colonization was negatively correlated with the abundances of several microbial groups, including S. epidermidis (p = 0.004).

Conclusions/significance: The nares environment is colonized by a temporally stable microbiota that is distinct from other regions of the integument. Negative association between S. aureus, S. epidermidis, and other groups suggests microbial competition during colonization of the nares, a finding that could be exploited to limit S. aureus colonization.

Show MeSH
Related in: MedlinePlus