Limits...
Apical polarity in three-dimensional culture systems: where to now?

Inman JL, Bissell MJ - J. Biol. (2010)

Bottom Line: Delineation of the mechanisms that establish and maintain the polarity of epithelial tissues is essential to understanding morphogenesis, tissue specificity and cancer.Three-dimensional culture assays provide a useful platform for dissecting these processes but, as discussed in a recent study in BMC Biology on the culture of mammary gland epithelial cells, multiple parameters that influence the model must be taken into account.

View Article: PubMed Central - HTML - PubMed

Affiliation: Lawrence Berkeley National Laboratory, Division of Life Sciences, 1 Cyclotron Road, Berkeley, CA 94720, USA.

ABSTRACT
Delineation of the mechanisms that establish and maintain the polarity of epithelial tissues is essential to understanding morphogenesis, tissue specificity and cancer. Three-dimensional culture assays provide a useful platform for dissecting these processes but, as discussed in a recent study in BMC Biology on the culture of mammary gland epithelial cells, multiple parameters that influence the model must be taken into account.

Show MeSH

Related in: MedlinePlus

Organization of basement membrane superstructure. A simplified and hypothetical diagram showing how BM might be assembled at the surface of a cell or an acinus. (a) Top: acinus surrounded by laminin-111 (green). Bottom: the laminin-111 polymerizes and engages integrins (blue) on the basal face of the epithelial cells. However, the laminin-111 polymer is not stably anchored into a supramolecular structure. In this case, apical polarity is not established and tight-junction proteins (pink) do not get organized on the apical surface of the acini. (b) Laminin-111 polymer (green) is anchored by type IV collagen (red); co-localization of the two proteins is shown by yellow. The proteins are now physically connected by nidogen (black). Basal integrins (blue) are organized and are likely to be held in a spatial orientation that allows proper signaling for establishment of apical polarity. Tight-junction proteins become organized apically in the acinus, and apical polarity is established.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2871524&req=5

Figure 2: Organization of basement membrane superstructure. A simplified and hypothetical diagram showing how BM might be assembled at the surface of a cell or an acinus. (a) Top: acinus surrounded by laminin-111 (green). Bottom: the laminin-111 polymerizes and engages integrins (blue) on the basal face of the epithelial cells. However, the laminin-111 polymer is not stably anchored into a supramolecular structure. In this case, apical polarity is not established and tight-junction proteins (pink) do not get organized on the apical surface of the acini. (b) Laminin-111 polymer (green) is anchored by type IV collagen (red); co-localization of the two proteins is shown by yellow. The proteins are now physically connected by nidogen (black). Basal integrins (blue) are organized and are likely to be held in a spatial orientation that allows proper signaling for establishment of apical polarity. Tight-junction proteins become organized apically in the acinus, and apical polarity is established.

Mentions: Petersen et al. [11] showed formation of a human-derived BM when human breast cells were grown in mouse-derived lrECM gels. Plachot et al. [8] also find a continuous BM in their 3D cultures. What is important here is their finding - reminiscent of the embryonic BM - that type IV collagen most likely stabilizes the laminin-111 polymer in 3D cultures of mammary cells, and that this may be directly related to the capacity of S1 acini to establish apical polarity (Figure 2).


Apical polarity in three-dimensional culture systems: where to now?

Inman JL, Bissell MJ - J. Biol. (2010)

Organization of basement membrane superstructure. A simplified and hypothetical diagram showing how BM might be assembled at the surface of a cell or an acinus. (a) Top: acinus surrounded by laminin-111 (green). Bottom: the laminin-111 polymerizes and engages integrins (blue) on the basal face of the epithelial cells. However, the laminin-111 polymer is not stably anchored into a supramolecular structure. In this case, apical polarity is not established and tight-junction proteins (pink) do not get organized on the apical surface of the acini. (b) Laminin-111 polymer (green) is anchored by type IV collagen (red); co-localization of the two proteins is shown by yellow. The proteins are now physically connected by nidogen (black). Basal integrins (blue) are organized and are likely to be held in a spatial orientation that allows proper signaling for establishment of apical polarity. Tight-junction proteins become organized apically in the acinus, and apical polarity is established.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2871524&req=5

Figure 2: Organization of basement membrane superstructure. A simplified and hypothetical diagram showing how BM might be assembled at the surface of a cell or an acinus. (a) Top: acinus surrounded by laminin-111 (green). Bottom: the laminin-111 polymerizes and engages integrins (blue) on the basal face of the epithelial cells. However, the laminin-111 polymer is not stably anchored into a supramolecular structure. In this case, apical polarity is not established and tight-junction proteins (pink) do not get organized on the apical surface of the acini. (b) Laminin-111 polymer (green) is anchored by type IV collagen (red); co-localization of the two proteins is shown by yellow. The proteins are now physically connected by nidogen (black). Basal integrins (blue) are organized and are likely to be held in a spatial orientation that allows proper signaling for establishment of apical polarity. Tight-junction proteins become organized apically in the acinus, and apical polarity is established.
Mentions: Petersen et al. [11] showed formation of a human-derived BM when human breast cells were grown in mouse-derived lrECM gels. Plachot et al. [8] also find a continuous BM in their 3D cultures. What is important here is their finding - reminiscent of the embryonic BM - that type IV collagen most likely stabilizes the laminin-111 polymer in 3D cultures of mammary cells, and that this may be directly related to the capacity of S1 acini to establish apical polarity (Figure 2).

Bottom Line: Delineation of the mechanisms that establish and maintain the polarity of epithelial tissues is essential to understanding morphogenesis, tissue specificity and cancer.Three-dimensional culture assays provide a useful platform for dissecting these processes but, as discussed in a recent study in BMC Biology on the culture of mammary gland epithelial cells, multiple parameters that influence the model must be taken into account.

View Article: PubMed Central - HTML - PubMed

Affiliation: Lawrence Berkeley National Laboratory, Division of Life Sciences, 1 Cyclotron Road, Berkeley, CA 94720, USA.

ABSTRACT
Delineation of the mechanisms that establish and maintain the polarity of epithelial tissues is essential to understanding morphogenesis, tissue specificity and cancer. Three-dimensional culture assays provide a useful platform for dissecting these processes but, as discussed in a recent study in BMC Biology on the culture of mammary gland epithelial cells, multiple parameters that influence the model must be taken into account.

Show MeSH
Related in: MedlinePlus