Limits...
Galectin-9/TIM-3 interaction regulates virus-specific primary and memory CD8 T cell response.

Sehrawat S, Reddy PB, Rajasagi N, Suryawanshi A, Hirashima M, Rouse BT - PLoS Pathog. (2010)

Bottom Line: In support of this, we show that animals unable to produce Gal-9, because of gene knockout, develop acute and memory responses to HSV that are of greater magnitude and better quality than those that occur in normal infected animals.The increased effector T cell responses led to significantly more efficient virus control.Our results indicate that manipulating galectin signals, as can be achieved using appropriate sugars, may represent a convenient and inexpensive approach to enhance acute and memory responses to a virus infection.

View Article: PubMed Central - PubMed

Affiliation: Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA.

ABSTRACT
In this communication, we demonstrate that galectin (Gal)-9 acts to constrain CD8(+) T cell immunity to Herpes Simplex Virus (HSV) infection. In support of this, we show that animals unable to produce Gal-9, because of gene knockout, develop acute and memory responses to HSV that are of greater magnitude and better quality than those that occur in normal infected animals. Interestingly, infusion of normal infected mice with alpha-lactose, the sugar that binds to the carbohydrate-binding domain of Gal-9 limiting its engagement of T cell immunoglobulin and mucin (TIM-3) receptors, also caused a more elevated and higher quality CD8(+) T cell response to HSV particularly in the acute phase. Such sugar treated infected mice also had expanded populations of effector as well as memory CD8(+) T cells. The increased effector T cell responses led to significantly more efficient virus control. The mechanisms responsible for the outcome of the Gal-9/TIM-3 interaction in normal infected mice involved direct inhibitory effects on TIM-3(+) CD8(+) T effector cells as well as the promotion of Foxp3(+) regulatory T cell activity. Our results indicate that manipulating galectin signals, as can be achieved using appropriate sugars, may represent a convenient and inexpensive approach to enhance acute and memory responses to a virus infection.

Show MeSH

Related in: MedlinePlus

Galectin-9 deficiency extrinsically influences the virus-specific CD8+ T cell responses.Splenocytes (having 1×106 of CD8+ T cells) isolated from either WT or Gal-9 KO animals after labeling with CFSE were transferred in WT Thy1.1 animals (n = 4 for each recipient) (A-C). Alternatively, CFSE labeled splenocytes (having 1×106 of CD8+ T cells) isolated from Thy1.1 animals were transferred either in WT or in Gal-9 KO animals (D-E). The recipients were infected with 2.5×105 HSV in footpad after 24 hr pi. Five dpi spleens and PLN cell suspensions were analyzed for the dilution of CFSE in transferred Thy1.2+ or Thy1.1+CD8+ T cells. A. FACS plots show the frequencies of transferred Thy1.2+ WT or the Gal-9 KO cells in the PLNs of Thy1.1 animals 5 dpi B. The representative histograms showing the extent of CFSE dilution in the transferred WT or the Gal-9 KO cells (gated on Thy1.2+CD8+ T cells as shown in A). C. Absolute numbers of the transferred Thy1.2+ CD8+ T cells WT or the Gal-9 KO cells in the PLNs of recipients. D. The extent of CFSE dilution in the transferred Thy1.1+CD8+ T cells isolated 5dpi from WT and Gal-9 KO animals. E. FACS plots show the co-expression of Kb-gB-Tet and CFSE in the dividing transferred Thy1.1+CD8+ T cells isolated from WT and Gal-9 KO animals. F. Purified CD8+ T cells (90% purity) from WT and Gal-9 KO animals after CFSE labeling were stimulated with plate bound anti-CD3 and CD28 mAb for 3 days and the extent of proliferation was measured by CFSE dilution in CD8+ T cells. Red lines show the CFSE staining in Gal-9 KO, Black thick lines show the CFSE staining in WT cells and black thin lines represent CFSE staining in un-stimulated cells. G-L. The lymphoid organs of infected WT and Gal-9 KO animals at 6 dpi were isolated and Foxp3+CD4+ T cells were characterized. G. FACS plots show the frequencies of Foxp3+ Tregs in PLNs (upper panel) and spleens (lower panel) of WT and Gal-9 KO. The percentages (H), MFI of Foxp3 expression on Foxp3+CD4+ Tregs isolated from PLN (I) and spleens (J) of WT and Gal-9 KO animals are shown. K-L. The frequencies of CD103+ (K) and TIM-3+ (L) Foxp3+ Tregs isolated from the draining PLNs (upper panel) and Spleens (lower panel) of WT and Gal-9 KO animals are shown. M. The expression of CD44 on Foxp3+CD4+ T cells isolated from the PLNs (upper panel) and spleens (lower panel) of WT (thin lines) and Gal-9 KO (thicker lines) animals.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2865527&req=5

ppat-1000882-g006: Galectin-9 deficiency extrinsically influences the virus-specific CD8+ T cell responses.Splenocytes (having 1×106 of CD8+ T cells) isolated from either WT or Gal-9 KO animals after labeling with CFSE were transferred in WT Thy1.1 animals (n = 4 for each recipient) (A-C). Alternatively, CFSE labeled splenocytes (having 1×106 of CD8+ T cells) isolated from Thy1.1 animals were transferred either in WT or in Gal-9 KO animals (D-E). The recipients were infected with 2.5×105 HSV in footpad after 24 hr pi. Five dpi spleens and PLN cell suspensions were analyzed for the dilution of CFSE in transferred Thy1.2+ or Thy1.1+CD8+ T cells. A. FACS plots show the frequencies of transferred Thy1.2+ WT or the Gal-9 KO cells in the PLNs of Thy1.1 animals 5 dpi B. The representative histograms showing the extent of CFSE dilution in the transferred WT or the Gal-9 KO cells (gated on Thy1.2+CD8+ T cells as shown in A). C. Absolute numbers of the transferred Thy1.2+ CD8+ T cells WT or the Gal-9 KO cells in the PLNs of recipients. D. The extent of CFSE dilution in the transferred Thy1.1+CD8+ T cells isolated 5dpi from WT and Gal-9 KO animals. E. FACS plots show the co-expression of Kb-gB-Tet and CFSE in the dividing transferred Thy1.1+CD8+ T cells isolated from WT and Gal-9 KO animals. F. Purified CD8+ T cells (90% purity) from WT and Gal-9 KO animals after CFSE labeling were stimulated with plate bound anti-CD3 and CD28 mAb for 3 days and the extent of proliferation was measured by CFSE dilution in CD8+ T cells. Red lines show the CFSE staining in Gal-9 KO, Black thick lines show the CFSE staining in WT cells and black thin lines represent CFSE staining in un-stimulated cells. G-L. The lymphoid organs of infected WT and Gal-9 KO animals at 6 dpi were isolated and Foxp3+CD4+ T cells were characterized. G. FACS plots show the frequencies of Foxp3+ Tregs in PLNs (upper panel) and spleens (lower panel) of WT and Gal-9 KO. The percentages (H), MFI of Foxp3 expression on Foxp3+CD4+ Tregs isolated from PLN (I) and spleens (J) of WT and Gal-9 KO animals are shown. K-L. The frequencies of CD103+ (K) and TIM-3+ (L) Foxp3+ Tregs isolated from the draining PLNs (upper panel) and Spleens (lower panel) of WT and Gal-9 KO animals are shown. M. The expression of CD44 on Foxp3+CD4+ T cells isolated from the PLNs (upper panel) and spleens (lower panel) of WT (thin lines) and Gal-9 KO (thicker lines) animals.

Mentions: Our observation that Gal-9 KO mice develop superior CD8+ T cell responses to HSV infection could be explained by the Gal-9 KO CD8+ T cells being intrinsically more responsive or being less inhibited when Gal-9 is absent in the environment. To further evaluate the situation, two types of experiments were done. In one approach, Thy1.2 naïve Gal-9 KO or WT CFSE labeled LN cells were transferred into Thy1.1 animals that were then infected via the footpad with HSV. In such experiments, no significant differences in the extent of proliferation by Gal-9 KO and WT CD8+ T cells could be observed (Fig 6A-C). This indicates that intrinsic reactivity differences between Gal-9 KO and WT T cells did not account for enhanced responses of Gal-9 KO animals.


Galectin-9/TIM-3 interaction regulates virus-specific primary and memory CD8 T cell response.

Sehrawat S, Reddy PB, Rajasagi N, Suryawanshi A, Hirashima M, Rouse BT - PLoS Pathog. (2010)

Galectin-9 deficiency extrinsically influences the virus-specific CD8+ T cell responses.Splenocytes (having 1×106 of CD8+ T cells) isolated from either WT or Gal-9 KO animals after labeling with CFSE were transferred in WT Thy1.1 animals (n = 4 for each recipient) (A-C). Alternatively, CFSE labeled splenocytes (having 1×106 of CD8+ T cells) isolated from Thy1.1 animals were transferred either in WT or in Gal-9 KO animals (D-E). The recipients were infected with 2.5×105 HSV in footpad after 24 hr pi. Five dpi spleens and PLN cell suspensions were analyzed for the dilution of CFSE in transferred Thy1.2+ or Thy1.1+CD8+ T cells. A. FACS plots show the frequencies of transferred Thy1.2+ WT or the Gal-9 KO cells in the PLNs of Thy1.1 animals 5 dpi B. The representative histograms showing the extent of CFSE dilution in the transferred WT or the Gal-9 KO cells (gated on Thy1.2+CD8+ T cells as shown in A). C. Absolute numbers of the transferred Thy1.2+ CD8+ T cells WT or the Gal-9 KO cells in the PLNs of recipients. D. The extent of CFSE dilution in the transferred Thy1.1+CD8+ T cells isolated 5dpi from WT and Gal-9 KO animals. E. FACS plots show the co-expression of Kb-gB-Tet and CFSE in the dividing transferred Thy1.1+CD8+ T cells isolated from WT and Gal-9 KO animals. F. Purified CD8+ T cells (90% purity) from WT and Gal-9 KO animals after CFSE labeling were stimulated with plate bound anti-CD3 and CD28 mAb for 3 days and the extent of proliferation was measured by CFSE dilution in CD8+ T cells. Red lines show the CFSE staining in Gal-9 KO, Black thick lines show the CFSE staining in WT cells and black thin lines represent CFSE staining in un-stimulated cells. G-L. The lymphoid organs of infected WT and Gal-9 KO animals at 6 dpi were isolated and Foxp3+CD4+ T cells were characterized. G. FACS plots show the frequencies of Foxp3+ Tregs in PLNs (upper panel) and spleens (lower panel) of WT and Gal-9 KO. The percentages (H), MFI of Foxp3 expression on Foxp3+CD4+ Tregs isolated from PLN (I) and spleens (J) of WT and Gal-9 KO animals are shown. K-L. The frequencies of CD103+ (K) and TIM-3+ (L) Foxp3+ Tregs isolated from the draining PLNs (upper panel) and Spleens (lower panel) of WT and Gal-9 KO animals are shown. M. The expression of CD44 on Foxp3+CD4+ T cells isolated from the PLNs (upper panel) and spleens (lower panel) of WT (thin lines) and Gal-9 KO (thicker lines) animals.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2865527&req=5

ppat-1000882-g006: Galectin-9 deficiency extrinsically influences the virus-specific CD8+ T cell responses.Splenocytes (having 1×106 of CD8+ T cells) isolated from either WT or Gal-9 KO animals after labeling with CFSE were transferred in WT Thy1.1 animals (n = 4 for each recipient) (A-C). Alternatively, CFSE labeled splenocytes (having 1×106 of CD8+ T cells) isolated from Thy1.1 animals were transferred either in WT or in Gal-9 KO animals (D-E). The recipients were infected with 2.5×105 HSV in footpad after 24 hr pi. Five dpi spleens and PLN cell suspensions were analyzed for the dilution of CFSE in transferred Thy1.2+ or Thy1.1+CD8+ T cells. A. FACS plots show the frequencies of transferred Thy1.2+ WT or the Gal-9 KO cells in the PLNs of Thy1.1 animals 5 dpi B. The representative histograms showing the extent of CFSE dilution in the transferred WT or the Gal-9 KO cells (gated on Thy1.2+CD8+ T cells as shown in A). C. Absolute numbers of the transferred Thy1.2+ CD8+ T cells WT or the Gal-9 KO cells in the PLNs of recipients. D. The extent of CFSE dilution in the transferred Thy1.1+CD8+ T cells isolated 5dpi from WT and Gal-9 KO animals. E. FACS plots show the co-expression of Kb-gB-Tet and CFSE in the dividing transferred Thy1.1+CD8+ T cells isolated from WT and Gal-9 KO animals. F. Purified CD8+ T cells (90% purity) from WT and Gal-9 KO animals after CFSE labeling were stimulated with plate bound anti-CD3 and CD28 mAb for 3 days and the extent of proliferation was measured by CFSE dilution in CD8+ T cells. Red lines show the CFSE staining in Gal-9 KO, Black thick lines show the CFSE staining in WT cells and black thin lines represent CFSE staining in un-stimulated cells. G-L. The lymphoid organs of infected WT and Gal-9 KO animals at 6 dpi were isolated and Foxp3+CD4+ T cells were characterized. G. FACS plots show the frequencies of Foxp3+ Tregs in PLNs (upper panel) and spleens (lower panel) of WT and Gal-9 KO. The percentages (H), MFI of Foxp3 expression on Foxp3+CD4+ Tregs isolated from PLN (I) and spleens (J) of WT and Gal-9 KO animals are shown. K-L. The frequencies of CD103+ (K) and TIM-3+ (L) Foxp3+ Tregs isolated from the draining PLNs (upper panel) and Spleens (lower panel) of WT and Gal-9 KO animals are shown. M. The expression of CD44 on Foxp3+CD4+ T cells isolated from the PLNs (upper panel) and spleens (lower panel) of WT (thin lines) and Gal-9 KO (thicker lines) animals.
Mentions: Our observation that Gal-9 KO mice develop superior CD8+ T cell responses to HSV infection could be explained by the Gal-9 KO CD8+ T cells being intrinsically more responsive or being less inhibited when Gal-9 is absent in the environment. To further evaluate the situation, two types of experiments were done. In one approach, Thy1.2 naïve Gal-9 KO or WT CFSE labeled LN cells were transferred into Thy1.1 animals that were then infected via the footpad with HSV. In such experiments, no significant differences in the extent of proliferation by Gal-9 KO and WT CD8+ T cells could be observed (Fig 6A-C). This indicates that intrinsic reactivity differences between Gal-9 KO and WT T cells did not account for enhanced responses of Gal-9 KO animals.

Bottom Line: In support of this, we show that animals unable to produce Gal-9, because of gene knockout, develop acute and memory responses to HSV that are of greater magnitude and better quality than those that occur in normal infected animals.The increased effector T cell responses led to significantly more efficient virus control.Our results indicate that manipulating galectin signals, as can be achieved using appropriate sugars, may represent a convenient and inexpensive approach to enhance acute and memory responses to a virus infection.

View Article: PubMed Central - PubMed

Affiliation: Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA.

ABSTRACT
In this communication, we demonstrate that galectin (Gal)-9 acts to constrain CD8(+) T cell immunity to Herpes Simplex Virus (HSV) infection. In support of this, we show that animals unable to produce Gal-9, because of gene knockout, develop acute and memory responses to HSV that are of greater magnitude and better quality than those that occur in normal infected animals. Interestingly, infusion of normal infected mice with alpha-lactose, the sugar that binds to the carbohydrate-binding domain of Gal-9 limiting its engagement of T cell immunoglobulin and mucin (TIM-3) receptors, also caused a more elevated and higher quality CD8(+) T cell response to HSV particularly in the acute phase. Such sugar treated infected mice also had expanded populations of effector as well as memory CD8(+) T cells. The increased effector T cell responses led to significantly more efficient virus control. The mechanisms responsible for the outcome of the Gal-9/TIM-3 interaction in normal infected mice involved direct inhibitory effects on TIM-3(+) CD8(+) T effector cells as well as the promotion of Foxp3(+) regulatory T cell activity. Our results indicate that manipulating galectin signals, as can be achieved using appropriate sugars, may represent a convenient and inexpensive approach to enhance acute and memory responses to a virus infection.

Show MeSH
Related in: MedlinePlus