Limits...
Involvement of global genome repair, transcription coupled repair, and chromatin remodeling in UV DNA damage response changes during development.

Lans H, Marteijn JA, Schumacher B, Hoeijmakers JH, Jansen G, Vermeulen W - PLoS Genet. (2010)

Bottom Line: Currently, it is not well understood to what extent both pathways contribute to genome maintenance and cell survival in a developing organism exposed to UV light.Here, we show that eukaryotic NER, initiated by two distinct subpathways, is well conserved in the nematode Caenorhabditis elegans.In germ cells and early embryos, we find that GGR is the major pathway contributing to normal development and survival after UV irradiation, whereas in later developmental stages TCR is predominantly engaged.

View Article: PubMed Central - PubMed

Affiliation: Department of Genetics, Medical Genetics Center, Erasmus MC, Rotterdam, The Netherlands.

ABSTRACT
Nucleotide Excision Repair (NER), which removes a variety of helix-distorting lesions from DNA, is initiated by two distinct DNA damage-sensing mechanisms. Transcription Coupled Repair (TCR) removes damage from the active strand of transcribed genes and depends on the SWI/SNF family protein CSB. Global Genome Repair (GGR) removes damage present elsewhere in the genome and depends on damage recognition by the XPC/RAD23/Centrin2 complex. Currently, it is not well understood to what extent both pathways contribute to genome maintenance and cell survival in a developing organism exposed to UV light. Here, we show that eukaryotic NER, initiated by two distinct subpathways, is well conserved in the nematode Caenorhabditis elegans. In C. elegans, involvement of TCR and GGR in the UV-induced DNA damage response changes during development. In germ cells and early embryos, we find that GGR is the major pathway contributing to normal development and survival after UV irradiation, whereas in later developmental stages TCR is predominantly engaged. Furthermore, we identify four ISWI/Cohesin and four SWI/SNF family chromatin remodeling factors that are implicated in the UV damage response in a developmental stage dependent manner. These in vivo studies strongly suggest that involvement of different repair pathways and chromatin remodeling proteins in UV-induced DNA repair depends on developmental stage of cells.

Show MeSH

Related in: MedlinePlus

Germ cell and embryo survival following UV irradiation.The percentages (survival) of hatched eggs following UVB irradiation are plotted against the indicated applied UVB-doses on germ cells in young adult animals carrying mutations in general NER factors (A and B), in rad-23 and csb-1 single and double mutants (C) and in xpc-1 single and rad-23; xpc-1 and xpc-1; csb-1 double mutants (D). (E) shows a simplified model of GGR and TCR in the germ line of C. elegans. Data for xpf-1 and ercc-1 in (B) were normalized because these mutants produce ∼20–25% unviable eggs without UV irradiation. Each line represents the mean of two or more independent experiments (typically, n>40 eggs). However, for xpa-1, xpg-1, xpf-1, ercc-1, rad-23; csb-1 and xpc-1; csb-1 mutants high UV doses severely decreased the amount of eggs laid. Survival was scored as zero if no eggs were laid. Error bars denote the s.e.m.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2865526&req=5

pgen-1000941-g002: Germ cell and embryo survival following UV irradiation.The percentages (survival) of hatched eggs following UVB irradiation are plotted against the indicated applied UVB-doses on germ cells in young adult animals carrying mutations in general NER factors (A and B), in rad-23 and csb-1 single and double mutants (C) and in xpc-1 single and rad-23; xpc-1 and xpc-1; csb-1 double mutants (D). (E) shows a simplified model of GGR and TCR in the germ line of C. elegans. Data for xpf-1 and ercc-1 in (B) were normalized because these mutants produce ∼20–25% unviable eggs without UV irradiation. Each line represents the mean of two or more independent experiments (typically, n>40 eggs). However, for xpa-1, xpg-1, xpf-1, ercc-1, rad-23; csb-1 and xpc-1; csb-1 mutants high UV doses severely decreased the amount of eggs laid. Survival was scored as zero if no eggs were laid. Error bars denote the s.e.m.

Mentions: To test UV sensitivity of germ cells, adult animals were irradiated and allowed to recover for 24 hours, after which they were put on fresh plates to lay eggs for 3–4 hours (Figure S1A). ‘Germ cell and embryo survival’ was measured by determining the percentage of eggs that hatched over the total amount of eggs laid. As expected, we found that the core NER factors xpa-1, xpg-1, xpf-1 and ercc-1 were necessary for germ cells and embryos to survive even relatively low doses of UV irradiation (Figure 2A and 2B).


Involvement of global genome repair, transcription coupled repair, and chromatin remodeling in UV DNA damage response changes during development.

Lans H, Marteijn JA, Schumacher B, Hoeijmakers JH, Jansen G, Vermeulen W - PLoS Genet. (2010)

Germ cell and embryo survival following UV irradiation.The percentages (survival) of hatched eggs following UVB irradiation are plotted against the indicated applied UVB-doses on germ cells in young adult animals carrying mutations in general NER factors (A and B), in rad-23 and csb-1 single and double mutants (C) and in xpc-1 single and rad-23; xpc-1 and xpc-1; csb-1 double mutants (D). (E) shows a simplified model of GGR and TCR in the germ line of C. elegans. Data for xpf-1 and ercc-1 in (B) were normalized because these mutants produce ∼20–25% unviable eggs without UV irradiation. Each line represents the mean of two or more independent experiments (typically, n>40 eggs). However, for xpa-1, xpg-1, xpf-1, ercc-1, rad-23; csb-1 and xpc-1; csb-1 mutants high UV doses severely decreased the amount of eggs laid. Survival was scored as zero if no eggs were laid. Error bars denote the s.e.m.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2865526&req=5

pgen-1000941-g002: Germ cell and embryo survival following UV irradiation.The percentages (survival) of hatched eggs following UVB irradiation are plotted against the indicated applied UVB-doses on germ cells in young adult animals carrying mutations in general NER factors (A and B), in rad-23 and csb-1 single and double mutants (C) and in xpc-1 single and rad-23; xpc-1 and xpc-1; csb-1 double mutants (D). (E) shows a simplified model of GGR and TCR in the germ line of C. elegans. Data for xpf-1 and ercc-1 in (B) were normalized because these mutants produce ∼20–25% unviable eggs without UV irradiation. Each line represents the mean of two or more independent experiments (typically, n>40 eggs). However, for xpa-1, xpg-1, xpf-1, ercc-1, rad-23; csb-1 and xpc-1; csb-1 mutants high UV doses severely decreased the amount of eggs laid. Survival was scored as zero if no eggs were laid. Error bars denote the s.e.m.
Mentions: To test UV sensitivity of germ cells, adult animals were irradiated and allowed to recover for 24 hours, after which they were put on fresh plates to lay eggs for 3–4 hours (Figure S1A). ‘Germ cell and embryo survival’ was measured by determining the percentage of eggs that hatched over the total amount of eggs laid. As expected, we found that the core NER factors xpa-1, xpg-1, xpf-1 and ercc-1 were necessary for germ cells and embryos to survive even relatively low doses of UV irradiation (Figure 2A and 2B).

Bottom Line: Currently, it is not well understood to what extent both pathways contribute to genome maintenance and cell survival in a developing organism exposed to UV light.Here, we show that eukaryotic NER, initiated by two distinct subpathways, is well conserved in the nematode Caenorhabditis elegans.In germ cells and early embryos, we find that GGR is the major pathway contributing to normal development and survival after UV irradiation, whereas in later developmental stages TCR is predominantly engaged.

View Article: PubMed Central - PubMed

Affiliation: Department of Genetics, Medical Genetics Center, Erasmus MC, Rotterdam, The Netherlands.

ABSTRACT
Nucleotide Excision Repair (NER), which removes a variety of helix-distorting lesions from DNA, is initiated by two distinct DNA damage-sensing mechanisms. Transcription Coupled Repair (TCR) removes damage from the active strand of transcribed genes and depends on the SWI/SNF family protein CSB. Global Genome Repair (GGR) removes damage present elsewhere in the genome and depends on damage recognition by the XPC/RAD23/Centrin2 complex. Currently, it is not well understood to what extent both pathways contribute to genome maintenance and cell survival in a developing organism exposed to UV light. Here, we show that eukaryotic NER, initiated by two distinct subpathways, is well conserved in the nematode Caenorhabditis elegans. In C. elegans, involvement of TCR and GGR in the UV-induced DNA damage response changes during development. In germ cells and early embryos, we find that GGR is the major pathway contributing to normal development and survival after UV irradiation, whereas in later developmental stages TCR is predominantly engaged. Furthermore, we identify four ISWI/Cohesin and four SWI/SNF family chromatin remodeling factors that are implicated in the UV damage response in a developmental stage dependent manner. These in vivo studies strongly suggest that involvement of different repair pathways and chromatin remodeling proteins in UV-induced DNA repair depends on developmental stage of cells.

Show MeSH
Related in: MedlinePlus