Limits...
Elevation of intact and proteolytic fragments of acute phase proteins constitutes the earliest systemic antiviral response in HIV-1 infection.

Kramer HB, Lavender KJ, Qin L, Stacey AR, Liu MK, di Gleria K, Simmons A, Gasper-Smith N, Haynes BF, McMichael AJ, Borrow P, Kessler BM - PLoS Pathog. (2010)

Bottom Line: Both A-SAA and VIRIP have anti-viral activity in vitro and quantitation of their plasma levels indicated that circulating concentrations are likely to be within the range of their inhibitory activity.Our results provide evidence for a first wave of host anti-viral defense occurring in the eclipse phase of AHI prior to systemic activation of other immune responses.Insights gained into the mechanism of action of acute-phase reactants and other innate molecules against HIV and how they are induced could be exploited for the future development of more efficient prophylactic vaccine strategies.

View Article: PubMed Central - PubMed

Affiliation: Henry Wellcome Building for Molecular Physiology, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, Oxfordshire, United Kingdom.

ABSTRACT
The earliest immune responses activated in acute human immunodeficiency virus type 1 infection (AHI) exert a critical influence on subsequent virus spread or containment. During this time frame, components of the innate immune system such as macrophages and DCs, NK cells, beta-defensins, complement and other anti-microbial factors, which have all been implicated in modulating HIV infection, may play particularly important roles. A proteomics-based screen was performed on a cohort from whom samples were available at time points prior to the earliest positive HIV detection. The ability of selected factors found to be elevated in the plasma during AHI to inhibit HIV-1 replication was analyzed using in vitro PBMC and DC infection models. Analysis of unique plasma donor panels spanning the eclipse and viral expansion phases revealed very early alterations in plasma proteins in AHI. Induction of acute phase protein serum amyloid A (A-SAA) occurred as early as 5-7 days prior to the first detection of plasma viral RNA, considerably prior to any elevation in systemic cytokine levels. Furthermore, a proteolytic fragment of alpha-1-antitrypsin (AAT), termed virus inhibitory peptide (VIRIP), was observed in plasma coincident with viremia. Both A-SAA and VIRIP have anti-viral activity in vitro and quantitation of their plasma levels indicated that circulating concentrations are likely to be within the range of their inhibitory activity. Our results provide evidence for a first wave of host anti-viral defense occurring in the eclipse phase of AHI prior to systemic activation of other immune responses. Insights gained into the mechanism of action of acute-phase reactants and other innate molecules against HIV and how they are induced could be exploited for the future development of more efficient prophylactic vaccine strategies.

Show MeSH

Related in: MedlinePlus

Identification of plasma proteins present at elevated levels prior to or during acute HIV-1 viremia by mass spectrometry.(A) Analysis of serial samples derived from plasma panel 64012 by MALDI-TOF mass spectrometry. Mass profiling reveals peaks (indicated by arrows in the insert) that are observed uniquely in HIV-1 RNA-positive (after T0, indicated in red, data for time points +11 and +13 days are shown) as compared to HIV-1 RNA-negative plasma samples (before T0, indicated in blue, data for time points −23 and −18 days are shown). (B) MALDI-TOF LIFT (MS/MS) spectrum of precursor ion mass 2178 Da [M+H]+ that was identified as the peptide 86–105 derived from human A-SAA (Swissprot accession nr. P02735). Identified b- and y- fragment ions are indicated. (C) MALDI-TOF-based mass profiling of three plasma panels (64012, 9018 and 9034) revealed an elevation of peaks 2178 Da (peptide 86–105 from A-SAA) and 2213 Da (peptide 960–979 from complement C3, see Fig. S1) before and during viremia. Viral load and T0 are as described previously [14]. Top panels: viral load; second and third panels: peak intensities of mass peaks 2178 Da and 2213 Da normalized to the corresponding peak intensities observed for the first time point of 64012; bottom panels: relative peak intensities of mass peaks 1555 and 2552 that were used as standards, illustrating use of comparable MS acquisition conditions for all time points. The arrows in the middle and bottom panels indicate viremic time points.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2865525&req=5

ppat-1000893-g002: Identification of plasma proteins present at elevated levels prior to or during acute HIV-1 viremia by mass spectrometry.(A) Analysis of serial samples derived from plasma panel 64012 by MALDI-TOF mass spectrometry. Mass profiling reveals peaks (indicated by arrows in the insert) that are observed uniquely in HIV-1 RNA-positive (after T0, indicated in red, data for time points +11 and +13 days are shown) as compared to HIV-1 RNA-negative plasma samples (before T0, indicated in blue, data for time points −23 and −18 days are shown). (B) MALDI-TOF LIFT (MS/MS) spectrum of precursor ion mass 2178 Da [M+H]+ that was identified as the peptide 86–105 derived from human A-SAA (Swissprot accession nr. P02735). Identified b- and y- fragment ions are indicated. (C) MALDI-TOF-based mass profiling of three plasma panels (64012, 9018 and 9034) revealed an elevation of peaks 2178 Da (peptide 86–105 from A-SAA) and 2213 Da (peptide 960–979 from complement C3, see Fig. S1) before and during viremia. Viral load and T0 are as described previously [14]. Top panels: viral load; second and third panels: peak intensities of mass peaks 2178 Da and 2213 Da normalized to the corresponding peak intensities observed for the first time point of 64012; bottom panels: relative peak intensities of mass peaks 1555 and 2552 that were used as standards, illustrating use of comparable MS acquisition conditions for all time points. The arrows in the middle and bottom panels indicate viremic time points.

Mentions: In order to determine whether there are detectable changes in plasma proteins or peptides accompanying the emergence of viremia, an initial mass spectrometry-based screen was performed on three plasma donor panels (Fig. 1B). Analysis of the longitudinal MALDI-TOF data revealed mass peaks that were elevated at viremic time points (Fig. 2A). One mass peak with a molecular mass of 2178 Dalton [M+H]+ was found to be considerably elevated in HIV-1-positive plasma (Fig. 2A). Sequencing by MALDI-TOF/TOF and LC-MS/MS identified this mass as peptide 86–105 derived from A-SAA (Fig. 2B and Fig. S1A). A semi-quantitative analysis of mass peak intensities of the 2178Da [M+H]+ peptide mass revealed that this peptide was elevated coincident with the increase in viremia, and in 2 of the 3 subjects, immediately prior to the detection of viremia (Fig. 2C), suggesting that A-SAA protein levels are elevated at these times. A second mass peak with a molecular mass of 2213 Dalton [M+H]+ was identified as peptide 960–979 of complement C3 (Fig. S1B). This peak was also elevated prior to as well as during viremia (Fig. 2C).


Elevation of intact and proteolytic fragments of acute phase proteins constitutes the earliest systemic antiviral response in HIV-1 infection.

Kramer HB, Lavender KJ, Qin L, Stacey AR, Liu MK, di Gleria K, Simmons A, Gasper-Smith N, Haynes BF, McMichael AJ, Borrow P, Kessler BM - PLoS Pathog. (2010)

Identification of plasma proteins present at elevated levels prior to or during acute HIV-1 viremia by mass spectrometry.(A) Analysis of serial samples derived from plasma panel 64012 by MALDI-TOF mass spectrometry. Mass profiling reveals peaks (indicated by arrows in the insert) that are observed uniquely in HIV-1 RNA-positive (after T0, indicated in red, data for time points +11 and +13 days are shown) as compared to HIV-1 RNA-negative plasma samples (before T0, indicated in blue, data for time points −23 and −18 days are shown). (B) MALDI-TOF LIFT (MS/MS) spectrum of precursor ion mass 2178 Da [M+H]+ that was identified as the peptide 86–105 derived from human A-SAA (Swissprot accession nr. P02735). Identified b- and y- fragment ions are indicated. (C) MALDI-TOF-based mass profiling of three plasma panels (64012, 9018 and 9034) revealed an elevation of peaks 2178 Da (peptide 86–105 from A-SAA) and 2213 Da (peptide 960–979 from complement C3, see Fig. S1) before and during viremia. Viral load and T0 are as described previously [14]. Top panels: viral load; second and third panels: peak intensities of mass peaks 2178 Da and 2213 Da normalized to the corresponding peak intensities observed for the first time point of 64012; bottom panels: relative peak intensities of mass peaks 1555 and 2552 that were used as standards, illustrating use of comparable MS acquisition conditions for all time points. The arrows in the middle and bottom panels indicate viremic time points.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2865525&req=5

ppat-1000893-g002: Identification of plasma proteins present at elevated levels prior to or during acute HIV-1 viremia by mass spectrometry.(A) Analysis of serial samples derived from plasma panel 64012 by MALDI-TOF mass spectrometry. Mass profiling reveals peaks (indicated by arrows in the insert) that are observed uniquely in HIV-1 RNA-positive (after T0, indicated in red, data for time points +11 and +13 days are shown) as compared to HIV-1 RNA-negative plasma samples (before T0, indicated in blue, data for time points −23 and −18 days are shown). (B) MALDI-TOF LIFT (MS/MS) spectrum of precursor ion mass 2178 Da [M+H]+ that was identified as the peptide 86–105 derived from human A-SAA (Swissprot accession nr. P02735). Identified b- and y- fragment ions are indicated. (C) MALDI-TOF-based mass profiling of three plasma panels (64012, 9018 and 9034) revealed an elevation of peaks 2178 Da (peptide 86–105 from A-SAA) and 2213 Da (peptide 960–979 from complement C3, see Fig. S1) before and during viremia. Viral load and T0 are as described previously [14]. Top panels: viral load; second and third panels: peak intensities of mass peaks 2178 Da and 2213 Da normalized to the corresponding peak intensities observed for the first time point of 64012; bottom panels: relative peak intensities of mass peaks 1555 and 2552 that were used as standards, illustrating use of comparable MS acquisition conditions for all time points. The arrows in the middle and bottom panels indicate viremic time points.
Mentions: In order to determine whether there are detectable changes in plasma proteins or peptides accompanying the emergence of viremia, an initial mass spectrometry-based screen was performed on three plasma donor panels (Fig. 1B). Analysis of the longitudinal MALDI-TOF data revealed mass peaks that were elevated at viremic time points (Fig. 2A). One mass peak with a molecular mass of 2178 Dalton [M+H]+ was found to be considerably elevated in HIV-1-positive plasma (Fig. 2A). Sequencing by MALDI-TOF/TOF and LC-MS/MS identified this mass as peptide 86–105 derived from A-SAA (Fig. 2B and Fig. S1A). A semi-quantitative analysis of mass peak intensities of the 2178Da [M+H]+ peptide mass revealed that this peptide was elevated coincident with the increase in viremia, and in 2 of the 3 subjects, immediately prior to the detection of viremia (Fig. 2C), suggesting that A-SAA protein levels are elevated at these times. A second mass peak with a molecular mass of 2213 Dalton [M+H]+ was identified as peptide 960–979 of complement C3 (Fig. S1B). This peak was also elevated prior to as well as during viremia (Fig. 2C).

Bottom Line: Both A-SAA and VIRIP have anti-viral activity in vitro and quantitation of their plasma levels indicated that circulating concentrations are likely to be within the range of their inhibitory activity.Our results provide evidence for a first wave of host anti-viral defense occurring in the eclipse phase of AHI prior to systemic activation of other immune responses.Insights gained into the mechanism of action of acute-phase reactants and other innate molecules against HIV and how they are induced could be exploited for the future development of more efficient prophylactic vaccine strategies.

View Article: PubMed Central - PubMed

Affiliation: Henry Wellcome Building for Molecular Physiology, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, Oxfordshire, United Kingdom.

ABSTRACT
The earliest immune responses activated in acute human immunodeficiency virus type 1 infection (AHI) exert a critical influence on subsequent virus spread or containment. During this time frame, components of the innate immune system such as macrophages and DCs, NK cells, beta-defensins, complement and other anti-microbial factors, which have all been implicated in modulating HIV infection, may play particularly important roles. A proteomics-based screen was performed on a cohort from whom samples were available at time points prior to the earliest positive HIV detection. The ability of selected factors found to be elevated in the plasma during AHI to inhibit HIV-1 replication was analyzed using in vitro PBMC and DC infection models. Analysis of unique plasma donor panels spanning the eclipse and viral expansion phases revealed very early alterations in plasma proteins in AHI. Induction of acute phase protein serum amyloid A (A-SAA) occurred as early as 5-7 days prior to the first detection of plasma viral RNA, considerably prior to any elevation in systemic cytokine levels. Furthermore, a proteolytic fragment of alpha-1-antitrypsin (AAT), termed virus inhibitory peptide (VIRIP), was observed in plasma coincident with viremia. Both A-SAA and VIRIP have anti-viral activity in vitro and quantitation of their plasma levels indicated that circulating concentrations are likely to be within the range of their inhibitory activity. Our results provide evidence for a first wave of host anti-viral defense occurring in the eclipse phase of AHI prior to systemic activation of other immune responses. Insights gained into the mechanism of action of acute-phase reactants and other innate molecules against HIV and how they are induced could be exploited for the future development of more efficient prophylactic vaccine strategies.

Show MeSH
Related in: MedlinePlus