Limits...
Physiological and histopathological investigations on the effects of alpha-lipoic acid in rats exposed to malathion.

Al-Attar AM - J. Biomed. Biotechnol. (2010)

Bottom Line: The activities of serum glutamic oxaloacetic acid transaminase (GOT), glutamic pyruvic acid transaminase (GPT), alkaline phosphatase (ALP), and acid phosphatase (ACP), and the values of creatinine, urea, and uric acid were statistically increased, while the values of total protein and total albumin were significantly decreased in rats exposed to malathion.In conclusion, this study obviously demonstrated that pretreatment with alpha-lipoic acid significantly attenuated the physiological and histopathological alterations induced by malathion.Also, the present study identifies new areas of research for development of better therapeutic agents for liver, kidney, and other organs' dysfunctions and diseases.

View Article: PubMed Central - PubMed

Affiliation: Department of Biological Sciences, Faculty of Sciences, King Abdul Aziz University, P.O. Box 139109, Jeddah 21323, Saudi Arabia. atef_a_2000@yahoo.com

ABSTRACT
The present study was designed to evaluate the influence of alpha-lipoic acid treatment in rats exposed to malathion. Forty adult male rats were used in this study and distributed into four groups. Animals of group 1 were untreated and served as control. Rats of group 2 were orally given malathion at a dose level of 100 mg/kg body weight (BW) for a period of one month. Experimental animals of group 3 were orally given alpha-lipoic acid at a dose level of 20 mg/kg BW and after 3 hours exposed to malathion at the same dose given to group 2. Rats of group 4 were supplemented with alpha-lipoic acid at the same dose given to group 3. The activities of serum glutamic oxaloacetic acid transaminase (GOT), glutamic pyruvic acid transaminase (GPT), alkaline phosphatase (ALP), and acid phosphatase (ACP), and the values of creatinine, urea, and uric acid were statistically increased, while the values of total protein and total albumin were significantly decreased in rats exposed to malathion. Moreover, administration of malathion for one month resulted in damage of liver and kidney structures. Administration of alpha-lipoic acid before malathion exposure to rat can prevent severe alterations of hemato-biochemical parameters and disruptions of liver and kidney structures. In conclusion, this study obviously demonstrated that pretreatment with alpha-lipoic acid significantly attenuated the physiological and histopathological alterations induced by malathion. Also, the present study identifies new areas of research for development of better therapeutic agents for liver, kidney, and other organs' dysfunctions and diseases.

Show MeSH

Related in: MedlinePlus

Renal corpuscle micrographs of control (a), malathion ((b) and (c)), and malathion plus α-lipoic acid (d) treated rats. Original magnification X400.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2864892&req=5

fig3: Renal corpuscle micrographs of control (a), malathion ((b) and (c)), and malathion plus α-lipoic acid (d) treated rats. Original magnification X400.

Mentions: Light microscopic examination of the liver of control rats showed the normal structure in Figure 2(a). Histopathological effects of malathion on liver of treated rats are presented in Figures 2(b) and 2(c). Rats treated with malathion showed many severe histopathological alterations. Administration of malathion for one month resulted in the damage of liver structure along with disarrangement of hepatic strands. Several cells also show histological features of necrosis. Moreover, an enlargement of the sinusoids and vacuole formations in hepatocytes, leucocytic infiltrations, dilation, and congestion of blood vessels with hemorrhage were noted in liver of rats exposed to malathion (group 2). α-Lipoic acid treatment brought back the cellular arrangement around the central vein and reduced necrosis (Figure 2(d)). Also, it helped to bring the blood vessels to normal condition. Mild to moderate enlargement in the sinusoids, vacuole formations in hepatocytes, leucocytic infiltrations, dilation and congestion of blood vessels with hemorrhage were observed in rats treated with malathion plus α-lipoic acid compared with malathion treated rats and control rats. Figure 3 shows the histology structures of the kidney in control group (Figure 3(a)), malathion treated rats (Figures 3(b) and 3(c)), and malathion plus α-lipoic acid treated rats (Figure 3(d)). Areas of renal cortex containing renal corpuscles and associated tubules showed more pronounced changes in treated animals compared with control. Therefore, these areas were selected for histological examination with the light microscope. The normal renal corpuscle consists of a tuft of capillaries, the glomerulus, surrounded by a double-walled epithelial capsule called Bowman's capsule. Between the two layers of the capsule is the urinary or Bowman's space (Figure 3(a)). In one-month malathion-dosed rats, there were pronounced changes in the structure of renal corpuscle including swelling appearances, increasing of urinary spaces, highly degeneration of glomeruli, Bowman's capsules and associated tubules structure (Figures 3(b) and 3(c)). α-Lipoic acid treatment reversed abnormal histology of renal cortex areas induced by malathion intoxication (Figure 3(d)). Renal corpuscles in this group were appeared more as normal as shown in Figure 3(a) and the most changes were noted in the structure of some glomeruli. Additionally, no detectable histological differences are observed by the light microscope between control rats and rats supplemented with only α-lipoic acid, group 4.


Physiological and histopathological investigations on the effects of alpha-lipoic acid in rats exposed to malathion.

Al-Attar AM - J. Biomed. Biotechnol. (2010)

Renal corpuscle micrographs of control (a), malathion ((b) and (c)), and malathion plus α-lipoic acid (d) treated rats. Original magnification X400.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2864892&req=5

fig3: Renal corpuscle micrographs of control (a), malathion ((b) and (c)), and malathion plus α-lipoic acid (d) treated rats. Original magnification X400.
Mentions: Light microscopic examination of the liver of control rats showed the normal structure in Figure 2(a). Histopathological effects of malathion on liver of treated rats are presented in Figures 2(b) and 2(c). Rats treated with malathion showed many severe histopathological alterations. Administration of malathion for one month resulted in the damage of liver structure along with disarrangement of hepatic strands. Several cells also show histological features of necrosis. Moreover, an enlargement of the sinusoids and vacuole formations in hepatocytes, leucocytic infiltrations, dilation, and congestion of blood vessels with hemorrhage were noted in liver of rats exposed to malathion (group 2). α-Lipoic acid treatment brought back the cellular arrangement around the central vein and reduced necrosis (Figure 2(d)). Also, it helped to bring the blood vessels to normal condition. Mild to moderate enlargement in the sinusoids, vacuole formations in hepatocytes, leucocytic infiltrations, dilation and congestion of blood vessels with hemorrhage were observed in rats treated with malathion plus α-lipoic acid compared with malathion treated rats and control rats. Figure 3 shows the histology structures of the kidney in control group (Figure 3(a)), malathion treated rats (Figures 3(b) and 3(c)), and malathion plus α-lipoic acid treated rats (Figure 3(d)). Areas of renal cortex containing renal corpuscles and associated tubules showed more pronounced changes in treated animals compared with control. Therefore, these areas were selected for histological examination with the light microscope. The normal renal corpuscle consists of a tuft of capillaries, the glomerulus, surrounded by a double-walled epithelial capsule called Bowman's capsule. Between the two layers of the capsule is the urinary or Bowman's space (Figure 3(a)). In one-month malathion-dosed rats, there were pronounced changes in the structure of renal corpuscle including swelling appearances, increasing of urinary spaces, highly degeneration of glomeruli, Bowman's capsules and associated tubules structure (Figures 3(b) and 3(c)). α-Lipoic acid treatment reversed abnormal histology of renal cortex areas induced by malathion intoxication (Figure 3(d)). Renal corpuscles in this group were appeared more as normal as shown in Figure 3(a) and the most changes were noted in the structure of some glomeruli. Additionally, no detectable histological differences are observed by the light microscope between control rats and rats supplemented with only α-lipoic acid, group 4.

Bottom Line: The activities of serum glutamic oxaloacetic acid transaminase (GOT), glutamic pyruvic acid transaminase (GPT), alkaline phosphatase (ALP), and acid phosphatase (ACP), and the values of creatinine, urea, and uric acid were statistically increased, while the values of total protein and total albumin were significantly decreased in rats exposed to malathion.In conclusion, this study obviously demonstrated that pretreatment with alpha-lipoic acid significantly attenuated the physiological and histopathological alterations induced by malathion.Also, the present study identifies new areas of research for development of better therapeutic agents for liver, kidney, and other organs' dysfunctions and diseases.

View Article: PubMed Central - PubMed

Affiliation: Department of Biological Sciences, Faculty of Sciences, King Abdul Aziz University, P.O. Box 139109, Jeddah 21323, Saudi Arabia. atef_a_2000@yahoo.com

ABSTRACT
The present study was designed to evaluate the influence of alpha-lipoic acid treatment in rats exposed to malathion. Forty adult male rats were used in this study and distributed into four groups. Animals of group 1 were untreated and served as control. Rats of group 2 were orally given malathion at a dose level of 100 mg/kg body weight (BW) for a period of one month. Experimental animals of group 3 were orally given alpha-lipoic acid at a dose level of 20 mg/kg BW and after 3 hours exposed to malathion at the same dose given to group 2. Rats of group 4 were supplemented with alpha-lipoic acid at the same dose given to group 3. The activities of serum glutamic oxaloacetic acid transaminase (GOT), glutamic pyruvic acid transaminase (GPT), alkaline phosphatase (ALP), and acid phosphatase (ACP), and the values of creatinine, urea, and uric acid were statistically increased, while the values of total protein and total albumin were significantly decreased in rats exposed to malathion. Moreover, administration of malathion for one month resulted in damage of liver and kidney structures. Administration of alpha-lipoic acid before malathion exposure to rat can prevent severe alterations of hemato-biochemical parameters and disruptions of liver and kidney structures. In conclusion, this study obviously demonstrated that pretreatment with alpha-lipoic acid significantly attenuated the physiological and histopathological alterations induced by malathion. Also, the present study identifies new areas of research for development of better therapeutic agents for liver, kidney, and other organs' dysfunctions and diseases.

Show MeSH
Related in: MedlinePlus