Limits...
Anatomy of the epidemiological literature on the 2003 SARS outbreaks in Hong Kong and Toronto: a time-stratified review.

Xing W, Hejblum G, Leung GM, Valleron AJ - PLoS Med. (2010)

Bottom Line: We compared the SARS-case and matched-control non-SARS articles published according to the timeline of submission, acceptance, and publication.Only 22% of the studies were submitted, 8% accepted, and 7% published during the epidemic.To facilitate information dissemination, journal managers should reengineer their fast-track channels, which should be adapted to the purpose of an emerging outbreak, taking into account the requirement of high standards of quality for scientific journals and competition with other online resources.

View Article: PubMed Central - PubMed

Affiliation: INSERM, U707, Paris, France. weijia.xing@inserm.fr

ABSTRACT

Background: Outbreaks of emerging infectious diseases, especially those of a global nature, require rapid epidemiological analysis and information dissemination. The final products of those activities usually comprise internal memoranda and briefs within public health authorities and original research published in peer-reviewed journals. Using the 2003 severe acute respiratory syndrome (SARS) epidemic as an example, we conducted a comprehensive time-stratified review of the published literature to describe the different types of epidemiological outputs.

Methods and findings: We identified and analyzed all published articles on the epidemiology of the SARS outbreak in Hong Kong or Toronto. The analysis was stratified by study design, research domain, data collection, and analytical technique. We compared the SARS-case and matched-control non-SARS articles published according to the timeline of submission, acceptance, and publication. The impact factors of the publishing journals were examined according to the time of publication of SARS articles, and the numbers of citations received by SARS-case and matched-control articles submitted during and after the epidemic were compared. Descriptive, analytical, theoretical, and experimental epidemiology concerned, respectively, 54%, 30%, 11%, and 6% of the studies. Only 22% of the studies were submitted, 8% accepted, and 7% published during the epidemic. The submission-to-acceptance and acceptance-to-publication intervals of the SARS articles submitted during the epidemic period were significantly shorter than the corresponding intervals of matched-control non-SARS articles published in the same journal issues (p<0.001 and p<0.01, respectively). The differences of median submission-to-acceptance intervals and median acceptance-to-publication intervals between SARS articles and their corresponding control articles were 106.5 d (95% confidence interval [CI] 55.0-140.1) and 63.5 d (95% CI 18.0-94.1), respectively. The median numbers of citations of the SARS articles submitted during the epidemic and over the 2 y thereafter were 17 (interquartile range [IQR] 8.0-52.0) and 8 (IQR 3.2-21.8), respectively, significantly higher than the median numbers of control article citations (15, IQR 8.5-16.5, p<0.05, and 7, IQR 3.0-12.0, p<0.01, respectively).

Conclusions: A majority of the epidemiological articles on SARS were submitted after the epidemic had ended, although the corresponding studies had relevance to public health authorities during the epidemic. To minimize the lag between research and the exigency of public health practice in the future, researchers should consider adopting common, predefined protocols and ready-to-use instruments to improve timeliness, and thus, relevance, in addition to standardizing comparability across studies. To facilitate information dissemination, journal managers should reengineer their fast-track channels, which should be adapted to the purpose of an emerging outbreak, taking into account the requirement of high standards of quality for scientific journals and competition with other online resources.

Show MeSH

Related in: MedlinePlus

Comparison of publication intervals for case and control articles during and after the SARS epidemic.Submission, acceptance, and publication dates were available for 129 SARS articles submitted within 2 y (including 33 submitted during the epidemic), but were unavailable for three out of 129 couples of control. The Kaplan-Meier curves show the proportions of submitted manuscripts (ordinate) that took more than x d (abscissa) to be published. The comparisons of the submission-to-acceptance intervals between SARS articles and their control articles are shown for the SARS articles submitted (A) during the epidemic and (B) within 2 y after the end of the SARS epidemic. The comparisons of the acceptance-to-publication intervals between SARS articles and their control articles are shown for the SARS articles submitted (C) during the epidemic and (D) within 2 y after the end of the SARS epidemic.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2864302&req=5

pmed-1000272-g005: Comparison of publication intervals for case and control articles during and after the SARS epidemic.Submission, acceptance, and publication dates were available for 129 SARS articles submitted within 2 y (including 33 submitted during the epidemic), but were unavailable for three out of 129 couples of control. The Kaplan-Meier curves show the proportions of submitted manuscripts (ordinate) that took more than x d (abscissa) to be published. The comparisons of the submission-to-acceptance intervals between SARS articles and their control articles are shown for the SARS articles submitted (A) during the epidemic and (B) within 2 y after the end of the SARS epidemic. The comparisons of the acceptance-to-publication intervals between SARS articles and their control articles are shown for the SARS articles submitted (C) during the epidemic and (D) within 2 y after the end of the SARS epidemic.

Mentions: Figure 5 shows the Kaplan-Meier curves representing the distributions of the submission-to-acceptance and acceptance-to-publication intervals for the SARS articles submitted during (left, Figure 5A and 5C, respectively) and after the epidemic (right, Figure 5B and 5D, respectively). The SARS articles submitted during the epidemic were accepted and published more rapidly than the non-SARS control articles (HR = 2.7, 95% CI 1.5–4.6, p<0.001 and HR = 1.7, 95% CI 1.1–2.5, p<0.01, respectively). The difference of median submission-to-acceptance intervals between SARS articles and their corresponding control articles was 106.5 d (95% CI 55.0–140.1) (Figure 5A); and the difference of median acceptance-to-publication intervals between SARS articles and their corresponding control articles was 63.5 d (95% CI 18.0–94.1) (Figure 5C). In contrast, the submission-to-acceptance and acceptance-to-publication intervals of the SARS articles submitted after the epidemic did not significantly differ from those of the control articles (p = 0.08 and p = 0.34, respectively). In addition, the submission-to-acceptance and acceptance-to-publication intervals for SARS articles submitted during the epidemic differed significantly from the corresponding intervals of SARS articles submitted over the 2 y thereafter (p<0.001 and p<0.01, respectively).


Anatomy of the epidemiological literature on the 2003 SARS outbreaks in Hong Kong and Toronto: a time-stratified review.

Xing W, Hejblum G, Leung GM, Valleron AJ - PLoS Med. (2010)

Comparison of publication intervals for case and control articles during and after the SARS epidemic.Submission, acceptance, and publication dates were available for 129 SARS articles submitted within 2 y (including 33 submitted during the epidemic), but were unavailable for three out of 129 couples of control. The Kaplan-Meier curves show the proportions of submitted manuscripts (ordinate) that took more than x d (abscissa) to be published. The comparisons of the submission-to-acceptance intervals between SARS articles and their control articles are shown for the SARS articles submitted (A) during the epidemic and (B) within 2 y after the end of the SARS epidemic. The comparisons of the acceptance-to-publication intervals between SARS articles and their control articles are shown for the SARS articles submitted (C) during the epidemic and (D) within 2 y after the end of the SARS epidemic.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2864302&req=5

pmed-1000272-g005: Comparison of publication intervals for case and control articles during and after the SARS epidemic.Submission, acceptance, and publication dates were available for 129 SARS articles submitted within 2 y (including 33 submitted during the epidemic), but were unavailable for three out of 129 couples of control. The Kaplan-Meier curves show the proportions of submitted manuscripts (ordinate) that took more than x d (abscissa) to be published. The comparisons of the submission-to-acceptance intervals between SARS articles and their control articles are shown for the SARS articles submitted (A) during the epidemic and (B) within 2 y after the end of the SARS epidemic. The comparisons of the acceptance-to-publication intervals between SARS articles and their control articles are shown for the SARS articles submitted (C) during the epidemic and (D) within 2 y after the end of the SARS epidemic.
Mentions: Figure 5 shows the Kaplan-Meier curves representing the distributions of the submission-to-acceptance and acceptance-to-publication intervals for the SARS articles submitted during (left, Figure 5A and 5C, respectively) and after the epidemic (right, Figure 5B and 5D, respectively). The SARS articles submitted during the epidemic were accepted and published more rapidly than the non-SARS control articles (HR = 2.7, 95% CI 1.5–4.6, p<0.001 and HR = 1.7, 95% CI 1.1–2.5, p<0.01, respectively). The difference of median submission-to-acceptance intervals between SARS articles and their corresponding control articles was 106.5 d (95% CI 55.0–140.1) (Figure 5A); and the difference of median acceptance-to-publication intervals between SARS articles and their corresponding control articles was 63.5 d (95% CI 18.0–94.1) (Figure 5C). In contrast, the submission-to-acceptance and acceptance-to-publication intervals of the SARS articles submitted after the epidemic did not significantly differ from those of the control articles (p = 0.08 and p = 0.34, respectively). In addition, the submission-to-acceptance and acceptance-to-publication intervals for SARS articles submitted during the epidemic differed significantly from the corresponding intervals of SARS articles submitted over the 2 y thereafter (p<0.001 and p<0.01, respectively).

Bottom Line: We compared the SARS-case and matched-control non-SARS articles published according to the timeline of submission, acceptance, and publication.Only 22% of the studies were submitted, 8% accepted, and 7% published during the epidemic.To facilitate information dissemination, journal managers should reengineer their fast-track channels, which should be adapted to the purpose of an emerging outbreak, taking into account the requirement of high standards of quality for scientific journals and competition with other online resources.

View Article: PubMed Central - PubMed

Affiliation: INSERM, U707, Paris, France. weijia.xing@inserm.fr

ABSTRACT

Background: Outbreaks of emerging infectious diseases, especially those of a global nature, require rapid epidemiological analysis and information dissemination. The final products of those activities usually comprise internal memoranda and briefs within public health authorities and original research published in peer-reviewed journals. Using the 2003 severe acute respiratory syndrome (SARS) epidemic as an example, we conducted a comprehensive time-stratified review of the published literature to describe the different types of epidemiological outputs.

Methods and findings: We identified and analyzed all published articles on the epidemiology of the SARS outbreak in Hong Kong or Toronto. The analysis was stratified by study design, research domain, data collection, and analytical technique. We compared the SARS-case and matched-control non-SARS articles published according to the timeline of submission, acceptance, and publication. The impact factors of the publishing journals were examined according to the time of publication of SARS articles, and the numbers of citations received by SARS-case and matched-control articles submitted during and after the epidemic were compared. Descriptive, analytical, theoretical, and experimental epidemiology concerned, respectively, 54%, 30%, 11%, and 6% of the studies. Only 22% of the studies were submitted, 8% accepted, and 7% published during the epidemic. The submission-to-acceptance and acceptance-to-publication intervals of the SARS articles submitted during the epidemic period were significantly shorter than the corresponding intervals of matched-control non-SARS articles published in the same journal issues (p<0.001 and p<0.01, respectively). The differences of median submission-to-acceptance intervals and median acceptance-to-publication intervals between SARS articles and their corresponding control articles were 106.5 d (95% confidence interval [CI] 55.0-140.1) and 63.5 d (95% CI 18.0-94.1), respectively. The median numbers of citations of the SARS articles submitted during the epidemic and over the 2 y thereafter were 17 (interquartile range [IQR] 8.0-52.0) and 8 (IQR 3.2-21.8), respectively, significantly higher than the median numbers of control article citations (15, IQR 8.5-16.5, p<0.05, and 7, IQR 3.0-12.0, p<0.01, respectively).

Conclusions: A majority of the epidemiological articles on SARS were submitted after the epidemic had ended, although the corresponding studies had relevance to public health authorities during the epidemic. To minimize the lag between research and the exigency of public health practice in the future, researchers should consider adopting common, predefined protocols and ready-to-use instruments to improve timeliness, and thus, relevance, in addition to standardizing comparability across studies. To facilitate information dissemination, journal managers should reengineer their fast-track channels, which should be adapted to the purpose of an emerging outbreak, taking into account the requirement of high standards of quality for scientific journals and competition with other online resources.

Show MeSH
Related in: MedlinePlus