Limits...
A glucose biofuel cell implanted in rats.

Cinquin P, Gondran C, Giroud F, Mazabrard S, Pellissier A, Boucher F, Alcaraz JP, Gorgy K, Lenouvel F, Mathé S, Porcu P, Cosnier S - PLoS ONE (2010)

Bottom Line: The breakthrough relies on the design of a new family of GBFCs, characterized by an innovative and simple mechanical confinement of various enzymes and redox mediators: enzymes are no longer covalently bound to the surface of the electron collectors, which enables use of a wide variety of enzymes and redox mediators, augments the quantity of active enzymes, and simplifies GBFC construction.Our most efficient GBFC was based on composite graphite discs containing glucose oxidase and ubiquinone at the anode, polyphenol oxidase (PPO) and quinone at the cathode.This GBFC, with electrodes of 0.133 mL, produced a peak specific power of 24.4 microW mL(-1), which is better than pacemakers' requirements and paves the way for the development of a new generation of implantable artificial organs, covering a wide range of medical applications.

View Article: PubMed Central - PubMed

Affiliation: Laboratoire TIMC-IMAG (Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications de Grenoble), Centre National de la Recherche Scientifique, Université Joseph Fourier, Grenoble, France. Philippe.Cinquin@imag.fr

ABSTRACT
Powering future generations of implanted medical devices will require cumbersome transcutaneous energy transfer or harvesting energy from the human body. No functional solution that harvests power from the body is currently available, despite attempts to use the Seebeck thermoelectric effect, vibrations or body movements. Glucose fuel cells appear more promising, since they produce electrical energy from glucose and dioxygen, two substrates present in physiological fluids. The most powerful ones, Glucose BioFuel Cells (GBFCs), are based on enzymes electrically wired by redox mediators. However, GBFCs cannot be implanted in animals, mainly because the enzymes they rely on either require low pH or are inhibited by chloride or urate anions, present in the Extra Cellular Fluid (ECF). Here we present the first functional implantable GBFC, working in the retroperitoneal space of freely moving rats. The breakthrough relies on the design of a new family of GBFCs, characterized by an innovative and simple mechanical confinement of various enzymes and redox mediators: enzymes are no longer covalently bound to the surface of the electron collectors, which enables use of a wide variety of enzymes and redox mediators, augments the quantity of active enzymes, and simplifies GBFC construction. Our most efficient GBFC was based on composite graphite discs containing glucose oxidase and ubiquinone at the anode, polyphenol oxidase (PPO) and quinone at the cathode. PPO reduces dioxygen into water, at pH 7 and in the presence of chloride ions and urates at physiological concentrations. This GBFC, with electrodes of 0.133 mL, produced a peak specific power of 24.4 microW mL(-1), which is better than pacemakers' requirements and paves the way for the development of a new generation of implantable artificial organs, covering a wide range of medical applications.

Show MeSH

Related in: MedlinePlus

Implants containing both Glucose Oxidase and catalase, before and after implantation in a rat.Implants containing both GOX and catalase, immobilized on barium alginate beads, in dialysis tubing wrapped in an exPTFE coating. (A) Before implantation. (B) After 3 months of implantation. A neo-vascular network can be seen, no sign of inflammation is present, proving the good tolerance of the rat for the implant.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2864295&req=5

pone-0010476-g004: Implants containing both Glucose Oxidase and catalase, before and after implantation in a rat.Implants containing both GOX and catalase, immobilized on barium alginate beads, in dialysis tubing wrapped in an exPTFE coating. (A) Before implantation. (B) After 3 months of implantation. A neo-vascular network can be seen, no sign of inflammation is present, proving the good tolerance of the rat for the implant.

Mentions: In order to power implanted organs, a GBFC must prove over an extended period of time that it can remain functional, and that it can extract sufficient glucose and O2 from the ECF. We carried out stability experiments consisting in daily recording the power-voltage profile (during discharges at 5 µA for 10 min) for an implanted GBFC. As previously observed, after an initial increase, the performances (power 1.8 µW and OCV 200 mV) for a smaller rat (444 g weight) remained stable (standard deviation 0.17 µW) until sacrifice of the animal after 11 days. Regarding long term glucose and O2 extraction from the ECF, we implanted in the retroperitoneal space of a rat a dialysis tubing of 4 mL wrapped in an exPTFE coating, containing GOX and catalase, and monitored during 3 months the production of gluconate in the daily urines of the animal (Materials and Methods S1). At sacrifice, no sign of inflammatory reaction against the implant was observed, while a neo-vascular network had developed around the implant (Fig. 4). A mean daily production of 555 µmoles day−1 of gluconate was measured.


A glucose biofuel cell implanted in rats.

Cinquin P, Gondran C, Giroud F, Mazabrard S, Pellissier A, Boucher F, Alcaraz JP, Gorgy K, Lenouvel F, Mathé S, Porcu P, Cosnier S - PLoS ONE (2010)

Implants containing both Glucose Oxidase and catalase, before and after implantation in a rat.Implants containing both GOX and catalase, immobilized on barium alginate beads, in dialysis tubing wrapped in an exPTFE coating. (A) Before implantation. (B) After 3 months of implantation. A neo-vascular network can be seen, no sign of inflammation is present, proving the good tolerance of the rat for the implant.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2864295&req=5

pone-0010476-g004: Implants containing both Glucose Oxidase and catalase, before and after implantation in a rat.Implants containing both GOX and catalase, immobilized on barium alginate beads, in dialysis tubing wrapped in an exPTFE coating. (A) Before implantation. (B) After 3 months of implantation. A neo-vascular network can be seen, no sign of inflammation is present, proving the good tolerance of the rat for the implant.
Mentions: In order to power implanted organs, a GBFC must prove over an extended period of time that it can remain functional, and that it can extract sufficient glucose and O2 from the ECF. We carried out stability experiments consisting in daily recording the power-voltage profile (during discharges at 5 µA for 10 min) for an implanted GBFC. As previously observed, after an initial increase, the performances (power 1.8 µW and OCV 200 mV) for a smaller rat (444 g weight) remained stable (standard deviation 0.17 µW) until sacrifice of the animal after 11 days. Regarding long term glucose and O2 extraction from the ECF, we implanted in the retroperitoneal space of a rat a dialysis tubing of 4 mL wrapped in an exPTFE coating, containing GOX and catalase, and monitored during 3 months the production of gluconate in the daily urines of the animal (Materials and Methods S1). At sacrifice, no sign of inflammatory reaction against the implant was observed, while a neo-vascular network had developed around the implant (Fig. 4). A mean daily production of 555 µmoles day−1 of gluconate was measured.

Bottom Line: The breakthrough relies on the design of a new family of GBFCs, characterized by an innovative and simple mechanical confinement of various enzymes and redox mediators: enzymes are no longer covalently bound to the surface of the electron collectors, which enables use of a wide variety of enzymes and redox mediators, augments the quantity of active enzymes, and simplifies GBFC construction.Our most efficient GBFC was based on composite graphite discs containing glucose oxidase and ubiquinone at the anode, polyphenol oxidase (PPO) and quinone at the cathode.This GBFC, with electrodes of 0.133 mL, produced a peak specific power of 24.4 microW mL(-1), which is better than pacemakers' requirements and paves the way for the development of a new generation of implantable artificial organs, covering a wide range of medical applications.

View Article: PubMed Central - PubMed

Affiliation: Laboratoire TIMC-IMAG (Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications de Grenoble), Centre National de la Recherche Scientifique, Université Joseph Fourier, Grenoble, France. Philippe.Cinquin@imag.fr

ABSTRACT
Powering future generations of implanted medical devices will require cumbersome transcutaneous energy transfer or harvesting energy from the human body. No functional solution that harvests power from the body is currently available, despite attempts to use the Seebeck thermoelectric effect, vibrations or body movements. Glucose fuel cells appear more promising, since they produce electrical energy from glucose and dioxygen, two substrates present in physiological fluids. The most powerful ones, Glucose BioFuel Cells (GBFCs), are based on enzymes electrically wired by redox mediators. However, GBFCs cannot be implanted in animals, mainly because the enzymes they rely on either require low pH or are inhibited by chloride or urate anions, present in the Extra Cellular Fluid (ECF). Here we present the first functional implantable GBFC, working in the retroperitoneal space of freely moving rats. The breakthrough relies on the design of a new family of GBFCs, characterized by an innovative and simple mechanical confinement of various enzymes and redox mediators: enzymes are no longer covalently bound to the surface of the electron collectors, which enables use of a wide variety of enzymes and redox mediators, augments the quantity of active enzymes, and simplifies GBFC construction. Our most efficient GBFC was based on composite graphite discs containing glucose oxidase and ubiquinone at the anode, polyphenol oxidase (PPO) and quinone at the cathode. PPO reduces dioxygen into water, at pH 7 and in the presence of chloride ions and urates at physiological concentrations. This GBFC, with electrodes of 0.133 mL, produced a peak specific power of 24.4 microW mL(-1), which is better than pacemakers' requirements and paves the way for the development of a new generation of implantable artificial organs, covering a wide range of medical applications.

Show MeSH
Related in: MedlinePlus