Limits...
Hyperuricaemia and the metabolic syndrome in type 2 DM.

Ogbera AO, Azenabor AO - Diabetol Metab Syndr (2010)

Bottom Line: Although, the prevalence of the MetS in subjects with hyperuricaemia and normouricaemia was comparable (61 vs 56%, p = 0.1), a higher proportion of hyperuricaemic subjects had 3 or more components of the Mets compared with normouricaemic subjects.SUA levels were found to be positively and significantly associated with serum TG (r = 0.2, p = 0.0001) and total cholesterol (r = 13, p = 0.001).SUA is positively and significantly associated with serum TG and total cholesterol.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Medicine, Lagos State University Teaching Hospital, Ikeja, Lagos, Nigeria. oogbera@yahoo.co.uk

ABSTRACT

Background: Elevated serum uric acid levels (SUA) have been associated with an increased risk of cardiovascular diseases and the metabolic syndrome (MetS) and are often reported to be higher in females than in males. The aim of this report is to determine the prevalence and clinical correlates of hyperuricaemia and also to evaluate associations with the MetS in people with type 2 diabetes mellitus (DM).

Methods: This was a cross-sectional study conducted in people with type 2 DM in Lagos, Nigeria. Hyperuricaemia was defined by cut-off values of > 7 mg/dl for men and > 6 mg/dl for women. The diagnosis of MetS was made using the new definition by the American Heart Association and other related bodies. Clinical and biochemical parameters were compared between subjects with hyperuricaemia and normouricaemia. Statistical analysis included usage of Student's t test, Pearson correlation coefficients, multivariate regression analysis and chi square.

Results: 601 patients with type 2 DM aged between 34-91 years were recruited for the study. The prevalence rates of hyperuricaemia and the MetS were 25% and 60% respectively. The frequency of occurrence of hyperuricaemia was comparable in both genders (59% vs 41%, p = 0.3). Although, the prevalence of the MetS in subjects with hyperuricaemia and normouricaemia was comparable (61 vs 56%, p = 0.1), a higher proportion of hyperuricaemic subjects had 3 or more components of the Mets compared with normouricaemic subjects. Possible predictors of hyperuricaemia include central obesity, smoking and elevated serum triglycerides (TG). SUA levels were found to be positively and significantly associated with serum TG (r = 0.2, p = 0.0001) and total cholesterol (r = 13, p = 0.001).

Conclusion: The prevalence of hyperuricaemia in subjects with type 2 DM is comparable in both genders and possible predictors of hyperuricaemia are potentially modifiable. SUA is positively and significantly associated with serum TG and total cholesterol.

No MeSH data available.


Related in: MedlinePlus

The distribution of the number of the components of the MetS in hyperuricaemic and normouricaemic subjects.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2864200&req=5

Figure 2: The distribution of the number of the components of the MetS in hyperuricaemic and normouricaemic subjects.

Mentions: Hyperuricaemia was noted in 150 subjects thus giving an overall prevalence rate of 25%. The proportion of female subjects with hyperuricaemia was comparable to that of the males with hyperuricaemia (59% vs 41%, p = 0.3). There was no age difference between subjects with hyperuricaemia and normouricaemic subjects (60 (10) vs 59.7 (10), p = 0.7). There was no statistical significant difference in the distribution of hyperuricaemia between the different age decades (p = 0.08). The prevalence of hyperuricaemia did not have any particular pattern with increasing age, however, there was a steep increase after 80 years of age and this increase was noted only in females. The sex and age distribution of the subjects with hyperuricaemia are shown in Figure 1. The mean levels of SUA in subjects with hyperuricaeamia and without hyperuricaemia were 8.1(2.0) mg% and 4.5 (1.2)mg% respectively. Subjects with hyperuricaemia had significantly higher mean levels of TG and TCHOL than those with normouricaemia. A comparison of clinical and biochemical parameters between subjects with hyperuricaemia and those with normouricaemia is shown in Table 2. The overall prevalence of the MetS was 355 (60%) and the proportion of the subjects with MetS who had hyperuricaemia, was comparable to that of the subjects with MetS who had normouricaemia (92(61%) vs 263 (56%), p = 0.1). The distribution of the number of the components of the MetS as depicted in Figure 2 showed that the percentages of subjects with hyperuricaemia that had 3 or more components of the MetS was significantly higher (p = 0.02) than that of normouricaemic subjects.


Hyperuricaemia and the metabolic syndrome in type 2 DM.

Ogbera AO, Azenabor AO - Diabetol Metab Syndr (2010)

The distribution of the number of the components of the MetS in hyperuricaemic and normouricaemic subjects.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2864200&req=5

Figure 2: The distribution of the number of the components of the MetS in hyperuricaemic and normouricaemic subjects.
Mentions: Hyperuricaemia was noted in 150 subjects thus giving an overall prevalence rate of 25%. The proportion of female subjects with hyperuricaemia was comparable to that of the males with hyperuricaemia (59% vs 41%, p = 0.3). There was no age difference between subjects with hyperuricaemia and normouricaemic subjects (60 (10) vs 59.7 (10), p = 0.7). There was no statistical significant difference in the distribution of hyperuricaemia between the different age decades (p = 0.08). The prevalence of hyperuricaemia did not have any particular pattern with increasing age, however, there was a steep increase after 80 years of age and this increase was noted only in females. The sex and age distribution of the subjects with hyperuricaemia are shown in Figure 1. The mean levels of SUA in subjects with hyperuricaeamia and without hyperuricaemia were 8.1(2.0) mg% and 4.5 (1.2)mg% respectively. Subjects with hyperuricaemia had significantly higher mean levels of TG and TCHOL than those with normouricaemia. A comparison of clinical and biochemical parameters between subjects with hyperuricaemia and those with normouricaemia is shown in Table 2. The overall prevalence of the MetS was 355 (60%) and the proportion of the subjects with MetS who had hyperuricaemia, was comparable to that of the subjects with MetS who had normouricaemia (92(61%) vs 263 (56%), p = 0.1). The distribution of the number of the components of the MetS as depicted in Figure 2 showed that the percentages of subjects with hyperuricaemia that had 3 or more components of the MetS was significantly higher (p = 0.02) than that of normouricaemic subjects.

Bottom Line: Although, the prevalence of the MetS in subjects with hyperuricaemia and normouricaemia was comparable (61 vs 56%, p = 0.1), a higher proportion of hyperuricaemic subjects had 3 or more components of the Mets compared with normouricaemic subjects.SUA levels were found to be positively and significantly associated with serum TG (r = 0.2, p = 0.0001) and total cholesterol (r = 13, p = 0.001).SUA is positively and significantly associated with serum TG and total cholesterol.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Medicine, Lagos State University Teaching Hospital, Ikeja, Lagos, Nigeria. oogbera@yahoo.co.uk

ABSTRACT

Background: Elevated serum uric acid levels (SUA) have been associated with an increased risk of cardiovascular diseases and the metabolic syndrome (MetS) and are often reported to be higher in females than in males. The aim of this report is to determine the prevalence and clinical correlates of hyperuricaemia and also to evaluate associations with the MetS in people with type 2 diabetes mellitus (DM).

Methods: This was a cross-sectional study conducted in people with type 2 DM in Lagos, Nigeria. Hyperuricaemia was defined by cut-off values of > 7 mg/dl for men and > 6 mg/dl for women. The diagnosis of MetS was made using the new definition by the American Heart Association and other related bodies. Clinical and biochemical parameters were compared between subjects with hyperuricaemia and normouricaemia. Statistical analysis included usage of Student's t test, Pearson correlation coefficients, multivariate regression analysis and chi square.

Results: 601 patients with type 2 DM aged between 34-91 years were recruited for the study. The prevalence rates of hyperuricaemia and the MetS were 25% and 60% respectively. The frequency of occurrence of hyperuricaemia was comparable in both genders (59% vs 41%, p = 0.3). Although, the prevalence of the MetS in subjects with hyperuricaemia and normouricaemia was comparable (61 vs 56%, p = 0.1), a higher proportion of hyperuricaemic subjects had 3 or more components of the Mets compared with normouricaemic subjects. Possible predictors of hyperuricaemia include central obesity, smoking and elevated serum triglycerides (TG). SUA levels were found to be positively and significantly associated with serum TG (r = 0.2, p = 0.0001) and total cholesterol (r = 13, p = 0.001).

Conclusion: The prevalence of hyperuricaemia in subjects with type 2 DM is comparable in both genders and possible predictors of hyperuricaemia are potentially modifiable. SUA is positively and significantly associated with serum TG and total cholesterol.

No MeSH data available.


Related in: MedlinePlus