Limits...
MosquitoMap and the Mal-area calculator: new web tools to relate mosquito species distribution with vector borne disease.

Foley DH, Wilkerson RC, Birney I, Harrison S, Christensen J, Rueda LM - Int J Health Geogr (2010)

Bottom Line: Data standards for mosquito records were developed for MosquitoMap.The Mal-area approach emphasizes the independent but cumulative contribution to disease risk of the vector species predicted present.MosquitoMap adds value to, and makes accessible, the results of past collecting efforts, as well as providing a template for other arthropod spatial databases.

View Article: PubMed Central - HTML - PubMed

Affiliation: Division of Entomology, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA. foleydes@si.edu

ABSTRACT

Background: Mosquitoes are important vectors of diseases but, in spite of various mosquito faunistic surveys globally, there is a need for a spatial online database of mosquito collection data and distribution summaries. Such a resource could provide entomologists with the results of previous mosquito surveys, and vector disease control workers, preventative medicine practitioners, and health planners with information relating mosquito distribution to vector-borne disease risk.

Results: A web application called MosquitoMap was constructed comprising mosquito collection point data stored in an ArcGIS 9.3 Server/SQL geodatabase that includes administrative area and vector species x country lookup tables. In addition to the layer containing mosquito collection points, other map layers were made available including environmental, and vector and pathogen/disease distribution layers. An application within MosquitoMap called the Mal-area calculator (MAC) was constructed to quantify the area of overlap, for any area of interest, of vector, human, and disease distribution models. Data standards for mosquito records were developed for MosquitoMap.

Conclusion: MosquitoMap is a public domain web resource that maps and compares georeferenced mosquito collection points to other spatial information, in a geographical information system setting. The MAC quantifies the Mal-area, i.e. the area where it is theoretically possible for vector-borne disease transmission to occur, thus providing a useful decision tool where other disease information is limited. The Mal-area approach emphasizes the independent but cumulative contribution to disease risk of the vector species predicted present. MosquitoMap adds value to, and makes accessible, the results of past collecting efforts, as well as providing a template for other arthropod spatial databases.

Show MeSH

Related in: MedlinePlus

System architecture of MosquitoMap. A client or prospective data provider accesses the web server hosting MosquitoMap. A downloadable spreadsheet is available with instructions regarding data requirements, and data can be submitted via email. A link is also available to the map viewer hosted on an application server running ArcGIS Server 9.3 Enterprise SDE/SQL. The client can map and search the geodatabase, or use the Mal-area calculator (MAC) to quantify the overlap of models of vector, disease and human distribution. Output is available to the client in various formats.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2837623&req=5

Figure 1: System architecture of MosquitoMap. A client or prospective data provider accesses the web server hosting MosquitoMap. A downloadable spreadsheet is available with instructions regarding data requirements, and data can be submitted via email. A link is also available to the map viewer hosted on an application server running ArcGIS Server 9.3 Enterprise SDE/SQL. The client can map and search the geodatabase, or use the Mal-area calculator (MAC) to quantify the overlap of models of vector, disease and human distribution. Output is available to the client in various formats.

Mentions: The web server hosting the MosquitoMap home page provides access to historical accounts for particular datasets, information on how to contribute data, and metadata information for vector and pathogen models. The data portal within the MosquitoMap webpage leads to the application server containing the map viewer and mosquito collection database. Base maps featured in MosquitoMap include ESRI® World satellite imagery and World Streetmap provided by ArcGIS Online Resource Centers [12]. MosquitoMap has pan and zoom controls, and is designed to operate similarly to other mass-market Internet mapping sites like Google Earth™. Mosquito collection point data are stored in an ArcGIS Server 9.3 Enterprise SDE/SQL Server 2005/2008 Standard geodatabase that includes GADM administrative area (see below) and vector species x country lookup tables, derived from the literature. Figure 1 shows the system architecture of MosquitoMap.


MosquitoMap and the Mal-area calculator: new web tools to relate mosquito species distribution with vector borne disease.

Foley DH, Wilkerson RC, Birney I, Harrison S, Christensen J, Rueda LM - Int J Health Geogr (2010)

System architecture of MosquitoMap. A client or prospective data provider accesses the web server hosting MosquitoMap. A downloadable spreadsheet is available with instructions regarding data requirements, and data can be submitted via email. A link is also available to the map viewer hosted on an application server running ArcGIS Server 9.3 Enterprise SDE/SQL. The client can map and search the geodatabase, or use the Mal-area calculator (MAC) to quantify the overlap of models of vector, disease and human distribution. Output is available to the client in various formats.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2837623&req=5

Figure 1: System architecture of MosquitoMap. A client or prospective data provider accesses the web server hosting MosquitoMap. A downloadable spreadsheet is available with instructions regarding data requirements, and data can be submitted via email. A link is also available to the map viewer hosted on an application server running ArcGIS Server 9.3 Enterprise SDE/SQL. The client can map and search the geodatabase, or use the Mal-area calculator (MAC) to quantify the overlap of models of vector, disease and human distribution. Output is available to the client in various formats.
Mentions: The web server hosting the MosquitoMap home page provides access to historical accounts for particular datasets, information on how to contribute data, and metadata information for vector and pathogen models. The data portal within the MosquitoMap webpage leads to the application server containing the map viewer and mosquito collection database. Base maps featured in MosquitoMap include ESRI® World satellite imagery and World Streetmap provided by ArcGIS Online Resource Centers [12]. MosquitoMap has pan and zoom controls, and is designed to operate similarly to other mass-market Internet mapping sites like Google Earth™. Mosquito collection point data are stored in an ArcGIS Server 9.3 Enterprise SDE/SQL Server 2005/2008 Standard geodatabase that includes GADM administrative area (see below) and vector species x country lookup tables, derived from the literature. Figure 1 shows the system architecture of MosquitoMap.

Bottom Line: Data standards for mosquito records were developed for MosquitoMap.The Mal-area approach emphasizes the independent but cumulative contribution to disease risk of the vector species predicted present.MosquitoMap adds value to, and makes accessible, the results of past collecting efforts, as well as providing a template for other arthropod spatial databases.

View Article: PubMed Central - HTML - PubMed

Affiliation: Division of Entomology, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA. foleydes@si.edu

ABSTRACT

Background: Mosquitoes are important vectors of diseases but, in spite of various mosquito faunistic surveys globally, there is a need for a spatial online database of mosquito collection data and distribution summaries. Such a resource could provide entomologists with the results of previous mosquito surveys, and vector disease control workers, preventative medicine practitioners, and health planners with information relating mosquito distribution to vector-borne disease risk.

Results: A web application called MosquitoMap was constructed comprising mosquito collection point data stored in an ArcGIS 9.3 Server/SQL geodatabase that includes administrative area and vector species x country lookup tables. In addition to the layer containing mosquito collection points, other map layers were made available including environmental, and vector and pathogen/disease distribution layers. An application within MosquitoMap called the Mal-area calculator (MAC) was constructed to quantify the area of overlap, for any area of interest, of vector, human, and disease distribution models. Data standards for mosquito records were developed for MosquitoMap.

Conclusion: MosquitoMap is a public domain web resource that maps and compares georeferenced mosquito collection points to other spatial information, in a geographical information system setting. The MAC quantifies the Mal-area, i.e. the area where it is theoretically possible for vector-borne disease transmission to occur, thus providing a useful decision tool where other disease information is limited. The Mal-area approach emphasizes the independent but cumulative contribution to disease risk of the vector species predicted present. MosquitoMap adds value to, and makes accessible, the results of past collecting efforts, as well as providing a template for other arthropod spatial databases.

Show MeSH
Related in: MedlinePlus