Limits...
Sugar alcohols, caries incidence, and remineralization of caries lesions: a literature review.

Mäkinen KK - Int J Dent (2010)

Bottom Line: Dental caries is reversible if detected and treated sufficiently early.Habitual use of xylitol, a sugar alcohol of the pentitol type, can be associated with significant reduction in caries incidence and with tooth remineralization.Based on known molecular parameters of simple dietary alditols, it is conceivable to predict that their efficacy in caries prevention will follow the homologous series, that is, that the number of OH-groups present in the alditol molecule will determine the efficacy as follows: erythritol >/= xylitol > sorbitol.

View Article: PubMed Central - PubMed

Affiliation: Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520 Turku, Finland.

ABSTRACT
Remineralization of minor enamel defects is a normal physiological process that is well known to clinicians and researchers in dentistry and oral biology. This process can be facilitated by various dietary and oral hygiene procedures and may also concern dentin caries lesions. Dental caries is reversible if detected and treated sufficiently early. Habitual use of xylitol, a sugar alcohol of the pentitol type, can be associated with significant reduction in caries incidence and with tooth remineralization. Other dietary polyols that can remarkably lower the incidence of caries include erythritol which is a tetritol-type alditol. Based on known molecular parameters of simple dietary alditols, it is conceivable to predict that their efficacy in caries prevention will follow the homologous series, that is, that the number of OH-groups present in the alditol molecule will determine the efficacy as follows: erythritol >/= xylitol > sorbitol. The possible difference between erythritol and xylitol must be confirmed in future clinical trials.

No MeSH data available.


Related in: MedlinePlus

A simplified presentation of the competition between water and xylitol molecules for Ca, assumed to play a role in environments involving whole-mouth saliva and plaque fluid. Here, Ca has interacted with six water molecules which constitute the primary hydration layer of the metal ion (the actual number of water molecules surrounding the spherical Ca ion may vary from 4 to 12). The resulting new hydration layer consists of water molecules and xylitol molecules. This leads to stabilization of the salivary Ca phosphate systems [14, 18]. Reproduced with permission [14].
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2836749&req=5

fig3: A simplified presentation of the competition between water and xylitol molecules for Ca, assumed to play a role in environments involving whole-mouth saliva and plaque fluid. Here, Ca has interacted with six water molecules which constitute the primary hydration layer of the metal ion (the actual number of water molecules surrounding the spherical Ca ion may vary from 4 to 12). The resulting new hydration layer consists of water molecules and xylitol molecules. This leads to stabilization of the salivary Ca phosphate systems [14, 18]. Reproduced with permission [14].

Mentions: (i) Competition between water and alditol molecules for Ca. When alditols such as xylitol and sorbitol are introduced into the oral cavity, they compete with water molecules for the primary hydration layer of Ca. The latter may comprise 4 to 12 water molecules that surround the metal ion. The partial displacement of water molecules in the hydration layer of Ca results in the formation of a new layer consisting of alditol and water, as shown schematically in Figure 3. This interaction between alditols and Ca contribute to the stabilizing effect of polyols in salivary Ca phosphate systems [14, 18].


Sugar alcohols, caries incidence, and remineralization of caries lesions: a literature review.

Mäkinen KK - Int J Dent (2010)

A simplified presentation of the competition between water and xylitol molecules for Ca, assumed to play a role in environments involving whole-mouth saliva and plaque fluid. Here, Ca has interacted with six water molecules which constitute the primary hydration layer of the metal ion (the actual number of water molecules surrounding the spherical Ca ion may vary from 4 to 12). The resulting new hydration layer consists of water molecules and xylitol molecules. This leads to stabilization of the salivary Ca phosphate systems [14, 18]. Reproduced with permission [14].
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2836749&req=5

fig3: A simplified presentation of the competition between water and xylitol molecules for Ca, assumed to play a role in environments involving whole-mouth saliva and plaque fluid. Here, Ca has interacted with six water molecules which constitute the primary hydration layer of the metal ion (the actual number of water molecules surrounding the spherical Ca ion may vary from 4 to 12). The resulting new hydration layer consists of water molecules and xylitol molecules. This leads to stabilization of the salivary Ca phosphate systems [14, 18]. Reproduced with permission [14].
Mentions: (i) Competition between water and alditol molecules for Ca. When alditols such as xylitol and sorbitol are introduced into the oral cavity, they compete with water molecules for the primary hydration layer of Ca. The latter may comprise 4 to 12 water molecules that surround the metal ion. The partial displacement of water molecules in the hydration layer of Ca results in the formation of a new layer consisting of alditol and water, as shown schematically in Figure 3. This interaction between alditols and Ca contribute to the stabilizing effect of polyols in salivary Ca phosphate systems [14, 18].

Bottom Line: Dental caries is reversible if detected and treated sufficiently early.Habitual use of xylitol, a sugar alcohol of the pentitol type, can be associated with significant reduction in caries incidence and with tooth remineralization.Based on known molecular parameters of simple dietary alditols, it is conceivable to predict that their efficacy in caries prevention will follow the homologous series, that is, that the number of OH-groups present in the alditol molecule will determine the efficacy as follows: erythritol >/= xylitol > sorbitol.

View Article: PubMed Central - PubMed

Affiliation: Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520 Turku, Finland.

ABSTRACT
Remineralization of minor enamel defects is a normal physiological process that is well known to clinicians and researchers in dentistry and oral biology. This process can be facilitated by various dietary and oral hygiene procedures and may also concern dentin caries lesions. Dental caries is reversible if detected and treated sufficiently early. Habitual use of xylitol, a sugar alcohol of the pentitol type, can be associated with significant reduction in caries incidence and with tooth remineralization. Other dietary polyols that can remarkably lower the incidence of caries include erythritol which is a tetritol-type alditol. Based on known molecular parameters of simple dietary alditols, it is conceivable to predict that their efficacy in caries prevention will follow the homologous series, that is, that the number of OH-groups present in the alditol molecule will determine the efficacy as follows: erythritol >/= xylitol > sorbitol. The possible difference between erythritol and xylitol must be confirmed in future clinical trials.

No MeSH data available.


Related in: MedlinePlus