Limits...
The Nanos3-3'UTR is required for germ cell specific NANOS3 expression in mouse embryos.

Suzuki H, Saba R, Sada A, Saga Y - PLoS ONE (2010)

Bottom Line: This is fundamental to the continuation of a species.Although Nanos3 is transcribed in both cell lineages, it is efficiently translated only in the germ lineage.Surprisingly, even when under the control of the CAG promoter which induces strong ubiquitous transcription in both germ cells and somatic cells, the addition of the Nanos3-3'UTR sequence to the coding region of exogenous gene was effective in restricting protein expression in germ cells.

View Article: PubMed Central - PubMed

Affiliation: Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan.

ABSTRACT

Background: The regulation of gene expression via a 3' untranslated region (UTR) plays essential roles in the discrimination of the germ cell lineage from somatic cells during embryogenesis. This is fundamental to the continuation of a species. Mouse NANOS3 is an essential protein required for the germ cell maintenance and is specifically expressed in these cells. However, the regulatory mechanisms that restrict the expression of this gene in the germ cells is largely unknown at present.

Methodology/principal findings: In our current study, we show that differences in the stability of Nanos3 mRNA between germ cells and somatic cells is brought about in a 3'UTR-dependent manner in mouse embryos. Although Nanos3 is transcribed in both cell lineages, it is efficiently translated only in the germ lineage. We also find that the translational suppression of NANOS3 in somatic cells is caused by a 3'UTR-mediated mRNA destabilizing mechanism. Surprisingly, even when under the control of the CAG promoter which induces strong ubiquitous transcription in both germ cells and somatic cells, the addition of the Nanos3-3'UTR sequence to the coding region of exogenous gene was effective in restricting protein expression in germ cells.

Conclusions/significance: Our current study thus suggests that Nanos3-3'UTR has an essential role in translational control in the mouse embryo.

Show MeSH

Related in: MedlinePlus

Replacement of Nos3-3′UTR with BghpA results in the upregulation of NANOS3-mRFP protein in somatic tissues.(A–D) Fluorescence images of male embryos derived from BAC-Nanos3-mRFP(Nos3-3′UTR) (A–B) and BAC-Nanos3-mRFP(BghpA) (C–D) transgenic embryos at E14.5. (A and C) The upper images are of the abdomens of embryos harboring the transgene (Tg+), whereas the lower images are of the same tissues from embryos with no transgene (Tg−). The broken gray lines indicate the gonads and broken yellow lines indicate the kidneys. (B and C) Whole body of Tg+ and Tg- embryos are shown. The image in the upper panel shows the mRFP fluorescence pattern, whilst the lower panels are the corresponding bright field images. (E and F) Developmental changes in the relative mRFP intensities in germ cells (red) and somatic cells (blue) derived from BAC-Nanos3-mRFP(Nos3-3′UTR) (E) and BAC-Nanos3-mRFP(BghpA) (F) transgenic embryos. Error bars represent the s.e.m.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2823788&req=5

pone-0009300-g003: Replacement of Nos3-3′UTR with BghpA results in the upregulation of NANOS3-mRFP protein in somatic tissues.(A–D) Fluorescence images of male embryos derived from BAC-Nanos3-mRFP(Nos3-3′UTR) (A–B) and BAC-Nanos3-mRFP(BghpA) (C–D) transgenic embryos at E14.5. (A and C) The upper images are of the abdomens of embryos harboring the transgene (Tg+), whereas the lower images are of the same tissues from embryos with no transgene (Tg−). The broken gray lines indicate the gonads and broken yellow lines indicate the kidneys. (B and C) Whole body of Tg+ and Tg- embryos are shown. The image in the upper panel shows the mRFP fluorescence pattern, whilst the lower panels are the corresponding bright field images. (E and F) Developmental changes in the relative mRFP intensities in germ cells (red) and somatic cells (blue) derived from BAC-Nanos3-mRFP(Nos3-3′UTR) (E) and BAC-Nanos3-mRFP(BghpA) (F) transgenic embryos. Error bars represent the s.e.m.

Mentions: Interestingly, however, in the embryo harboring BAC-Nanos3-mRFP(BghpA), the intensity of NANOS3-mRFP was gradually increased in the somatic tissues at later embryonic stage (Fig. 2K-L). In the E14.5 male, a striped pattern was observed for BAC-Nanos3-mRFP(Nos3-3′UTR) reflecting germ cell localization in the testis cords in gonads, whereas the pattern was unclear in BAC-Nanos3-mRFP(BghpA), indicating strong expression in the surrounding somatic tissues (compare Figs. 2H and 2L, 3A–D). In addition, the whole body of the BAC-Nanos3-mRFP(BghpA) embryos expressed NANOS3-mRFP (Fig. 3D). These results suggest that Nanos3 is transcribed in many embryonic tissues and that the Nanos3-3′UTR is required to suppress translation in somatic tissues.


The Nanos3-3'UTR is required for germ cell specific NANOS3 expression in mouse embryos.

Suzuki H, Saba R, Sada A, Saga Y - PLoS ONE (2010)

Replacement of Nos3-3′UTR with BghpA results in the upregulation of NANOS3-mRFP protein in somatic tissues.(A–D) Fluorescence images of male embryos derived from BAC-Nanos3-mRFP(Nos3-3′UTR) (A–B) and BAC-Nanos3-mRFP(BghpA) (C–D) transgenic embryos at E14.5. (A and C) The upper images are of the abdomens of embryos harboring the transgene (Tg+), whereas the lower images are of the same tissues from embryos with no transgene (Tg−). The broken gray lines indicate the gonads and broken yellow lines indicate the kidneys. (B and C) Whole body of Tg+ and Tg- embryos are shown. The image in the upper panel shows the mRFP fluorescence pattern, whilst the lower panels are the corresponding bright field images. (E and F) Developmental changes in the relative mRFP intensities in germ cells (red) and somatic cells (blue) derived from BAC-Nanos3-mRFP(Nos3-3′UTR) (E) and BAC-Nanos3-mRFP(BghpA) (F) transgenic embryos. Error bars represent the s.e.m.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2823788&req=5

pone-0009300-g003: Replacement of Nos3-3′UTR with BghpA results in the upregulation of NANOS3-mRFP protein in somatic tissues.(A–D) Fluorescence images of male embryos derived from BAC-Nanos3-mRFP(Nos3-3′UTR) (A–B) and BAC-Nanos3-mRFP(BghpA) (C–D) transgenic embryos at E14.5. (A and C) The upper images are of the abdomens of embryos harboring the transgene (Tg+), whereas the lower images are of the same tissues from embryos with no transgene (Tg−). The broken gray lines indicate the gonads and broken yellow lines indicate the kidneys. (B and C) Whole body of Tg+ and Tg- embryos are shown. The image in the upper panel shows the mRFP fluorescence pattern, whilst the lower panels are the corresponding bright field images. (E and F) Developmental changes in the relative mRFP intensities in germ cells (red) and somatic cells (blue) derived from BAC-Nanos3-mRFP(Nos3-3′UTR) (E) and BAC-Nanos3-mRFP(BghpA) (F) transgenic embryos. Error bars represent the s.e.m.
Mentions: Interestingly, however, in the embryo harboring BAC-Nanos3-mRFP(BghpA), the intensity of NANOS3-mRFP was gradually increased in the somatic tissues at later embryonic stage (Fig. 2K-L). In the E14.5 male, a striped pattern was observed for BAC-Nanos3-mRFP(Nos3-3′UTR) reflecting germ cell localization in the testis cords in gonads, whereas the pattern was unclear in BAC-Nanos3-mRFP(BghpA), indicating strong expression in the surrounding somatic tissues (compare Figs. 2H and 2L, 3A–D). In addition, the whole body of the BAC-Nanos3-mRFP(BghpA) embryos expressed NANOS3-mRFP (Fig. 3D). These results suggest that Nanos3 is transcribed in many embryonic tissues and that the Nanos3-3′UTR is required to suppress translation in somatic tissues.

Bottom Line: This is fundamental to the continuation of a species.Although Nanos3 is transcribed in both cell lineages, it is efficiently translated only in the germ lineage.Surprisingly, even when under the control of the CAG promoter which induces strong ubiquitous transcription in both germ cells and somatic cells, the addition of the Nanos3-3'UTR sequence to the coding region of exogenous gene was effective in restricting protein expression in germ cells.

View Article: PubMed Central - PubMed

Affiliation: Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan.

ABSTRACT

Background: The regulation of gene expression via a 3' untranslated region (UTR) plays essential roles in the discrimination of the germ cell lineage from somatic cells during embryogenesis. This is fundamental to the continuation of a species. Mouse NANOS3 is an essential protein required for the germ cell maintenance and is specifically expressed in these cells. However, the regulatory mechanisms that restrict the expression of this gene in the germ cells is largely unknown at present.

Methodology/principal findings: In our current study, we show that differences in the stability of Nanos3 mRNA between germ cells and somatic cells is brought about in a 3'UTR-dependent manner in mouse embryos. Although Nanos3 is transcribed in both cell lineages, it is efficiently translated only in the germ lineage. We also find that the translational suppression of NANOS3 in somatic cells is caused by a 3'UTR-mediated mRNA destabilizing mechanism. Surprisingly, even when under the control of the CAG promoter which induces strong ubiquitous transcription in both germ cells and somatic cells, the addition of the Nanos3-3'UTR sequence to the coding region of exogenous gene was effective in restricting protein expression in germ cells.

Conclusions/significance: Our current study thus suggests that Nanos3-3'UTR has an essential role in translational control in the mouse embryo.

Show MeSH
Related in: MedlinePlus