Limits...
Expression profiling of S. pombe acetyltransferase mutants identifies redundant pathways of gene regulation.

Nugent RL, Johnsson A, Fleharty B, Gogol M, Xue-Franzén Y, Seidel C, Wright AP, Forsburg SL - BMC Genomics (2010)

Bottom Line: Comparison of phenotypes and expression profiles in single, double and triple mutants indicate that these HAT enzymes have overlapping functions.Consistent with this, overlapping specificity in histone H3 acetylation is observed.However, there is no evidence for overlap with another HAT enzyme, encoded by the essential mst1+ gene.

View Article: PubMed Central - HTML - PubMed

Affiliation: Molecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089-2910, USA.

ABSTRACT

Background: Histone acetyltransferase enzymes (HATs) are implicated in regulation of transcription. HATs from different families may overlap in target and substrate specificity.

Results: We isolated the elp3+ gene encoding the histone acetyltransferase subunit of the Elongator complex in fission yeast and characterized the phenotype of an Deltaelp3 mutant. We examined genetic interactions between Deltaelp3 and two other HAT mutants, Deltamst2 and Deltagcn5 and used whole genome microarray analysis to analyze their effects on gene expression.

Conclusions: Comparison of phenotypes and expression profiles in single, double and triple mutants indicate that these HAT enzymes have overlapping functions. Consistent with this, overlapping specificity in histone H3 acetylation is observed. However, there is no evidence for overlap with another HAT enzyme, encoded by the essential mst1+ gene.

Show MeSH

Related in: MedlinePlus

Histone H3 acetylation is differentially affected by different HAT mutants. Levels were determined by Western blots of whole cell lysates from the indicated strains with antibodies specific to H3K9ac, H3K14ac, H3K18ac, compared to levels of actin and total histone H3 (C-term). Strain list: wild-type (FY368), Δgcn5 (Hu799), Δelp3(FY3851), Δmst2 (FY1890), Δgcn5 Δmst2(Hu990), Δgcn5 Δelp3 (FY3847), Δmst2 Δelp3 (FY3850), Δgcn5 Δelp3 Δmst2 (3854)
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2823694&req=5

Figure 5: Histone H3 acetylation is differentially affected by different HAT mutants. Levels were determined by Western blots of whole cell lysates from the indicated strains with antibodies specific to H3K9ac, H3K14ac, H3K18ac, compared to levels of actin and total histone H3 (C-term). Strain list: wild-type (FY368), Δgcn5 (Hu799), Δelp3(FY3851), Δmst2 (FY1890), Δgcn5 Δmst2(Hu990), Δgcn5 Δelp3 (FY3847), Δmst2 Δelp3 (FY3850), Δgcn5 Δelp3 Δmst2 (3854)

Mentions: As expected, we found H3 acetylation levels on H3K9, K14 and K18 were dramatically reduced in the Δgcn5 mutant (Fig 5). In Δelp3 and Δmst2 as well as in the Δmst2 Δelp3 double mutant there is only a modest decrease in H3K9 acetylation levels compared to wild type. In contrast, all strains lacking gcn5 show significant loss of H3K9ac (Fig. 5A), suggesting that Gcn5 is the major contributor to H3K9 acetylation. Similar results were observed for H3K18ac.


Expression profiling of S. pombe acetyltransferase mutants identifies redundant pathways of gene regulation.

Nugent RL, Johnsson A, Fleharty B, Gogol M, Xue-Franzén Y, Seidel C, Wright AP, Forsburg SL - BMC Genomics (2010)

Histone H3 acetylation is differentially affected by different HAT mutants. Levels were determined by Western blots of whole cell lysates from the indicated strains with antibodies specific to H3K9ac, H3K14ac, H3K18ac, compared to levels of actin and total histone H3 (C-term). Strain list: wild-type (FY368), Δgcn5 (Hu799), Δelp3(FY3851), Δmst2 (FY1890), Δgcn5 Δmst2(Hu990), Δgcn5 Δelp3 (FY3847), Δmst2 Δelp3 (FY3850), Δgcn5 Δelp3 Δmst2 (3854)
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2823694&req=5

Figure 5: Histone H3 acetylation is differentially affected by different HAT mutants. Levels were determined by Western blots of whole cell lysates from the indicated strains with antibodies specific to H3K9ac, H3K14ac, H3K18ac, compared to levels of actin and total histone H3 (C-term). Strain list: wild-type (FY368), Δgcn5 (Hu799), Δelp3(FY3851), Δmst2 (FY1890), Δgcn5 Δmst2(Hu990), Δgcn5 Δelp3 (FY3847), Δmst2 Δelp3 (FY3850), Δgcn5 Δelp3 Δmst2 (3854)
Mentions: As expected, we found H3 acetylation levels on H3K9, K14 and K18 were dramatically reduced in the Δgcn5 mutant (Fig 5). In Δelp3 and Δmst2 as well as in the Δmst2 Δelp3 double mutant there is only a modest decrease in H3K9 acetylation levels compared to wild type. In contrast, all strains lacking gcn5 show significant loss of H3K9ac (Fig. 5A), suggesting that Gcn5 is the major contributor to H3K9 acetylation. Similar results were observed for H3K18ac.

Bottom Line: Comparison of phenotypes and expression profiles in single, double and triple mutants indicate that these HAT enzymes have overlapping functions.Consistent with this, overlapping specificity in histone H3 acetylation is observed.However, there is no evidence for overlap with another HAT enzyme, encoded by the essential mst1+ gene.

View Article: PubMed Central - HTML - PubMed

Affiliation: Molecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089-2910, USA.

ABSTRACT

Background: Histone acetyltransferase enzymes (HATs) are implicated in regulation of transcription. HATs from different families may overlap in target and substrate specificity.

Results: We isolated the elp3+ gene encoding the histone acetyltransferase subunit of the Elongator complex in fission yeast and characterized the phenotype of an Deltaelp3 mutant. We examined genetic interactions between Deltaelp3 and two other HAT mutants, Deltamst2 and Deltagcn5 and used whole genome microarray analysis to analyze their effects on gene expression.

Conclusions: Comparison of phenotypes and expression profiles in single, double and triple mutants indicate that these HAT enzymes have overlapping functions. Consistent with this, overlapping specificity in histone H3 acetylation is observed. However, there is no evidence for overlap with another HAT enzyme, encoded by the essential mst1+ gene.

Show MeSH
Related in: MedlinePlus