Limits...
Bioinformatic search of plant microtubule-and cell cycle related serine-threonine protein kinases.

Karpov PA, Nadezhdina ES, Yemets AI, Matusov VG, Nyporko AY, Shashina NY, Blume YB - BMC Genomics (2010)

Bottom Line: A number of SLK, MAST2 and AURKA plant homologues were identified.The closest identified homologue of human AURKA kinase was a protein of unknown function, A7PY12/GSVIVT00026259001 from Vitis vinifera (herein named as "STALK", Serine-Threonine Aurora-Like Kinase).Analysis of STALK's three-dimensional structure confirmed its relationship to the subgroup of AURKA-like protein kinases.

View Article: PubMed Central - HTML - PubMed

Affiliation: Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine. karpov.p.a@gmail.com

ABSTRACT
A bioinformatic search was carried for plant homologues of human serine-threonine protein kinases involved in regulation of cell division and microtubule protein phosphorylation (SLK, PAK6, PAK7, MARK1, MAST2, TTBK1, TTBK2, AURKA, PLK1, PLK4 and PASK). A number of SLK, MAST2 and AURKA plant homologues were identified. The closest identified homologue of human AURKA kinase was a protein of unknown function, A7PY12/GSVIVT00026259001 from Vitis vinifera (herein named as "STALK", Serine-Threonine Aurora-Like Kinase). Analysis of STALK's three-dimensional structure confirmed its relationship to the subgroup of AURKA-like protein kinases.

Show MeSH
Catalytic domain alignment of human SLK_HUMAN (Q9H2G2) and putative plant SLK-like proteins. NP_BIND (ATP) - nucleotide phosphate binding region; Binding site (ATP) - ATP binding site; ACT_SITE - proton acceptor; consensus conserved motif in catalytic loop region of the subdomain VIb (animals (red): H-R-D-[LI]-K-[GA]-x-N and A. thaliana (blue): H-[RC]-D-[ILV]-K-x-x-N); consensus conserved motif in activation loop of the subdomain VIII (in animals (red): G-T-P-[YF]-[WY]-M-A-P-E and in A. thaliana (blue): G-[TS]-x-x-[WYF]-[ML]-[AS]-P-E)
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2822528&req=5

Figure 2: Catalytic domain alignment of human SLK_HUMAN (Q9H2G2) and putative plant SLK-like proteins. NP_BIND (ATP) - nucleotide phosphate binding region; Binding site (ATP) - ATP binding site; ACT_SITE - proton acceptor; consensus conserved motif in catalytic loop region of the subdomain VIb (animals (red): H-R-D-[LI]-K-[GA]-x-N and A. thaliana (blue): H-[RC]-D-[ILV]-K-x-x-N); consensus conserved motif in activation loop of the subdomain VIII (in animals (red): G-T-P-[YF]-[WY]-M-A-P-E and in A. thaliana (blue): G-[TS]-x-x-[WYF]-[ML]-[AS]-P-E)

Mentions: Uniprot scanning against SLK_HUMAN catalytic domain has revealed 11 plant homologues to STE20-like human kinase (Table 2) from A. thaliana (Q9LQA1/AT1G69210, O24527/At1g69220), Hordeum vulgare var. distichum (Q9ARL7/GenBank: AY013246.1), O. sativa ssp. japonica (Q10CN6/Os03g0755000), O. sativa ssp. indica (B8AK85/OsI_13553), Physcomitrella patens ssp. patens (A9RVK0/PHYPADRAFT_119967), Populus balsamifera ssp. trichocarpa (B9HXI5/POPTRDRAFT_226120), Ricinus communis (B9REC4/RCOM_1620250), Solanum chacoense (B3GK00/MAP4K1) [48 Champion et al., 2004a], Sorghum bicolor (Q8LKU7/Sb01g007720) and V. vinifera (A7P2E2/GSVIVT00030023001). Consensus region identity to Homo sapiens kinase SLK (Q9H2G2) catalytic region reached 45-46% with similarity of 65-66% (Table 2, Figure 2). Analysis of full sequences of potential plant homologues in SMART confirmed their relationship to serine/threonine-specific protein kinases. All identified plant homologues were found in TrEMBL database as deposited proteins with unknown function. As an exception, putative STE20 protein O24527/At1g69220 (TrEMBL database), from A. thaliana, is annotated as potential homologue of protein kinase SIK1.


Bioinformatic search of plant microtubule-and cell cycle related serine-threonine protein kinases.

Karpov PA, Nadezhdina ES, Yemets AI, Matusov VG, Nyporko AY, Shashina NY, Blume YB - BMC Genomics (2010)

Catalytic domain alignment of human SLK_HUMAN (Q9H2G2) and putative plant SLK-like proteins. NP_BIND (ATP) - nucleotide phosphate binding region; Binding site (ATP) - ATP binding site; ACT_SITE - proton acceptor; consensus conserved motif in catalytic loop region of the subdomain VIb (animals (red): H-R-D-[LI]-K-[GA]-x-N and A. thaliana (blue): H-[RC]-D-[ILV]-K-x-x-N); consensus conserved motif in activation loop of the subdomain VIII (in animals (red): G-T-P-[YF]-[WY]-M-A-P-E and in A. thaliana (blue): G-[TS]-x-x-[WYF]-[ML]-[AS]-P-E)
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2822528&req=5

Figure 2: Catalytic domain alignment of human SLK_HUMAN (Q9H2G2) and putative plant SLK-like proteins. NP_BIND (ATP) - nucleotide phosphate binding region; Binding site (ATP) - ATP binding site; ACT_SITE - proton acceptor; consensus conserved motif in catalytic loop region of the subdomain VIb (animals (red): H-R-D-[LI]-K-[GA]-x-N and A. thaliana (blue): H-[RC]-D-[ILV]-K-x-x-N); consensus conserved motif in activation loop of the subdomain VIII (in animals (red): G-T-P-[YF]-[WY]-M-A-P-E and in A. thaliana (blue): G-[TS]-x-x-[WYF]-[ML]-[AS]-P-E)
Mentions: Uniprot scanning against SLK_HUMAN catalytic domain has revealed 11 plant homologues to STE20-like human kinase (Table 2) from A. thaliana (Q9LQA1/AT1G69210, O24527/At1g69220), Hordeum vulgare var. distichum (Q9ARL7/GenBank: AY013246.1), O. sativa ssp. japonica (Q10CN6/Os03g0755000), O. sativa ssp. indica (B8AK85/OsI_13553), Physcomitrella patens ssp. patens (A9RVK0/PHYPADRAFT_119967), Populus balsamifera ssp. trichocarpa (B9HXI5/POPTRDRAFT_226120), Ricinus communis (B9REC4/RCOM_1620250), Solanum chacoense (B3GK00/MAP4K1) [48 Champion et al., 2004a], Sorghum bicolor (Q8LKU7/Sb01g007720) and V. vinifera (A7P2E2/GSVIVT00030023001). Consensus region identity to Homo sapiens kinase SLK (Q9H2G2) catalytic region reached 45-46% with similarity of 65-66% (Table 2, Figure 2). Analysis of full sequences of potential plant homologues in SMART confirmed their relationship to serine/threonine-specific protein kinases. All identified plant homologues were found in TrEMBL database as deposited proteins with unknown function. As an exception, putative STE20 protein O24527/At1g69220 (TrEMBL database), from A. thaliana, is annotated as potential homologue of protein kinase SIK1.

Bottom Line: A number of SLK, MAST2 and AURKA plant homologues were identified.The closest identified homologue of human AURKA kinase was a protein of unknown function, A7PY12/GSVIVT00026259001 from Vitis vinifera (herein named as "STALK", Serine-Threonine Aurora-Like Kinase).Analysis of STALK's three-dimensional structure confirmed its relationship to the subgroup of AURKA-like protein kinases.

View Article: PubMed Central - HTML - PubMed

Affiliation: Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine. karpov.p.a@gmail.com

ABSTRACT
A bioinformatic search was carried for plant homologues of human serine-threonine protein kinases involved in regulation of cell division and microtubule protein phosphorylation (SLK, PAK6, PAK7, MARK1, MAST2, TTBK1, TTBK2, AURKA, PLK1, PLK4 and PASK). A number of SLK, MAST2 and AURKA plant homologues were identified. The closest identified homologue of human AURKA kinase was a protein of unknown function, A7PY12/GSVIVT00026259001 from Vitis vinifera (herein named as "STALK", Serine-Threonine Aurora-Like Kinase). Analysis of STALK's three-dimensional structure confirmed its relationship to the subgroup of AURKA-like protein kinases.

Show MeSH