Limits...
Attentional networks in developmental dyscalculia.

Askenazi S, Henik A - Behav Brain Funct (2010)

Bottom Line: All participants were given preliminary tests to measure mathematical abilities, reading, attention and intelligence.The interaction between the alerting and executive function networks was also modulated by group.They suffer from difficulty in recruiting attention, in addition to the deficits in numerical processing.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Psychology and Zlotowski Center for Neuroscience Ben-Gurion University of the Negev, Beer-Sheva, Israel. ashkenas@bgu.ac.il

ABSTRACT

Background: Very little is known about attention deficits in developmental dyscalculia, hence, this study was designed to provide the missing information. We examined attention abilities of participants suffering from developmental dyscalculia using the attention networks test - interactions. This test was designed to examine three different attention networks--executive function, orienting and alerting--and the interactions between them.

Methods: Fourteen university students that were diagnosed as suffering from developmental dyscalculia--intelligence and reading abilities in the normal range and no indication of attention-deficit hyperactivity disorder--and 14 matched controls were tested using the attention networks test-interactions. All participants were given preliminary tests to measure mathematical abilities, reading, attention and intelligence.

Results: The results revealed deficits in the alerting network--a larger alerting effect--and in the executive function networks--a larger congruity effect in developmental dyscalculia participants. The interaction between the alerting and executive function networks was also modulated by group. In addition, developmental dyscalculia participants were slower to respond in the non-cued conditions.

Conclusions: These results imply specific attentional deficits in pure developmental dyscalculia. Namely, those with developmental dyscalculia seem to be deficient in the executive function and alertness networks. They suffer from difficulty in recruiting attention, in addition to the deficits in numerical processing.

Show MeSH

Related in: MedlinePlus

RTs as a function of group, cueing and congruity.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2821357&req=5

Figure 2: RTs as a function of group, cueing and congruity.

Mentions: The interaction between congruity and cueing (that examined the orienting network) was moderated by group [F(2, 52) = 4.4, MSE = 452, p < 0.05] (see Figure 2). Similar to a previous report [3], the control group presented an interaction between congruity and cueing. The congruity effect was larger in the invalid trials compared to the non-cued and the valid trials [F(1, 13) = 6.3, MSE = 831.5 , p < 0.05]. In particular, the congruity effect was similar in the non-cued and the valid trials [F < 1], and it was smaller than the congruity effect presented in the invalid condition [F(1, 13) = 63.3, MSE = 813, p < 0.05]. In contrast, the developmental dyscalculia group presented a different pattern; the congruity effect was similar in the non-cued and the invalid trials [F < 1], and it was smallest in the valid condition compared to the non-cued and the invalid conditions [F(1, 13) = 21.9, MSE = 417, p < 0.01]. The basis of this triple interaction was the group difference in the size of the congruity effect of the non-cued condition (larger in the developmental dyscalculia group compared to the controls). The difference between the invalid and the valid trials (without the non-cued condition) was not modulated by the group factor [F < 1]. In addition, the interaction between cue (invalid vs. valid) and congruity was not modulated by group [F < 1], that is, when the general analysis included only two validity conditions (valid and invalid), the interaction between group, validity and congruity was not significant. This indicates that the developmental dyscalculia and control groups had a similar congruency effect in the invalid and valid conditions.


Attentional networks in developmental dyscalculia.

Askenazi S, Henik A - Behav Brain Funct (2010)

RTs as a function of group, cueing and congruity.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2821357&req=5

Figure 2: RTs as a function of group, cueing and congruity.
Mentions: The interaction between congruity and cueing (that examined the orienting network) was moderated by group [F(2, 52) = 4.4, MSE = 452, p < 0.05] (see Figure 2). Similar to a previous report [3], the control group presented an interaction between congruity and cueing. The congruity effect was larger in the invalid trials compared to the non-cued and the valid trials [F(1, 13) = 6.3, MSE = 831.5 , p < 0.05]. In particular, the congruity effect was similar in the non-cued and the valid trials [F < 1], and it was smaller than the congruity effect presented in the invalid condition [F(1, 13) = 63.3, MSE = 813, p < 0.05]. In contrast, the developmental dyscalculia group presented a different pattern; the congruity effect was similar in the non-cued and the invalid trials [F < 1], and it was smallest in the valid condition compared to the non-cued and the invalid conditions [F(1, 13) = 21.9, MSE = 417, p < 0.01]. The basis of this triple interaction was the group difference in the size of the congruity effect of the non-cued condition (larger in the developmental dyscalculia group compared to the controls). The difference between the invalid and the valid trials (without the non-cued condition) was not modulated by the group factor [F < 1]. In addition, the interaction between cue (invalid vs. valid) and congruity was not modulated by group [F < 1], that is, when the general analysis included only two validity conditions (valid and invalid), the interaction between group, validity and congruity was not significant. This indicates that the developmental dyscalculia and control groups had a similar congruency effect in the invalid and valid conditions.

Bottom Line: All participants were given preliminary tests to measure mathematical abilities, reading, attention and intelligence.The interaction between the alerting and executive function networks was also modulated by group.They suffer from difficulty in recruiting attention, in addition to the deficits in numerical processing.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Psychology and Zlotowski Center for Neuroscience Ben-Gurion University of the Negev, Beer-Sheva, Israel. ashkenas@bgu.ac.il

ABSTRACT

Background: Very little is known about attention deficits in developmental dyscalculia, hence, this study was designed to provide the missing information. We examined attention abilities of participants suffering from developmental dyscalculia using the attention networks test - interactions. This test was designed to examine three different attention networks--executive function, orienting and alerting--and the interactions between them.

Methods: Fourteen university students that were diagnosed as suffering from developmental dyscalculia--intelligence and reading abilities in the normal range and no indication of attention-deficit hyperactivity disorder--and 14 matched controls were tested using the attention networks test-interactions. All participants were given preliminary tests to measure mathematical abilities, reading, attention and intelligence.

Results: The results revealed deficits in the alerting network--a larger alerting effect--and in the executive function networks--a larger congruity effect in developmental dyscalculia participants. The interaction between the alerting and executive function networks was also modulated by group. In addition, developmental dyscalculia participants were slower to respond in the non-cued conditions.

Conclusions: These results imply specific attentional deficits in pure developmental dyscalculia. Namely, those with developmental dyscalculia seem to be deficient in the executive function and alertness networks. They suffer from difficulty in recruiting attention, in addition to the deficits in numerical processing.

Show MeSH
Related in: MedlinePlus