Limits...
The prosurvival activity of ascites against TRAIL is associated with a shorter disease-free interval in patients with ovarian cancer.

Lane D, Matte I, Rancourt C, Piché A - J Ovarian Res (2010)

Bottom Line: The effect of ascites on cisplatin- and paclitaxel-induced cell death was assessed with 4 ascites having inhibitory effect on TRAIL-induced cell death and 2 that do not.Among a cohort of 35 patients with ascites, a threshold of TRAIL IC(50 )with ascites/IC(50 )without ascites > 2 was associated with shorter disease-free interval.The prosurvival activity of ascites against TRAIL is associated with shorter disease-free interval, which may be explained, at least in part, by ascites-induced cisplatin/paclitaxel resistance.

View Article: PubMed Central - HTML - PubMed

Affiliation: Département de Microbiologie et Infectiologie, Faculté de Médecine, Université de Sherbrooke, 3001, 12ième Avenue Nord, Sherbrooke, J1H 5N4, Canada.

ABSTRACT

Background: The production of ascites is a common complication of ovarian cancer. Ascites constitute a unique tumor microenvironment that may affect disease progression. In this context, we recently showed that ovarian cancer ascites may protect tumor cells from TRAIL-induced apoptosis. In this study, we sought to determine whether the prosurvival effect of ascites affects disease-free intervals.

Methods: Peritoneal fluids were obtained from 54 women undergoing intra-abdominal surgery for suspected ovarian cancer (44 cancers and 10 benign diseases). The ability of peritoneal fluids to protect from TRAIL was assessed in the ovarian cancer cell line CaOV3, and IC(50 )were determined. The anti-apoptotic activity of 6 ascites against cisplatin, paclitaxel, doxorubicin, etoposide and vinorelbine was also assessed in CaOV3 cells, and the prosurvival activity of two ascites was assessed in 9 primary ovarian cancer cultures.

Results: Among the 54 peritoneal fluids tested, inhibition of TRAIL cytotoxicity was variable. Fluids originating from ovarian cancer were generally more protective than fluids from non-malignant diseases. Most of the 44 ovarian cancer ascites increased TRAIL IC(50 )and this inhibitory effect did not correlate strongly with the protein concentration in these ascites or the levels of serum CA125, a tumor antigen which is used in the clinic as a marker of tumor burden. The effect of ascites on cisplatin- and paclitaxel-induced cell death was assessed with 4 ascites having inhibitory effect on TRAIL-induced cell death and 2 that do not. The four ascites with prosurvival activity against TRAIL had some inhibitory on cisplatin and/or paclitaxel. Two ovarian cancer ascites, OVC346 and OVC509, also inhibited TRAIL cytotoxicity in 9 primary cultures of ovarian tumor and induced Akt activation in three of these primary cultures. Among a cohort of 35 patients with ascites, a threshold of TRAIL IC(50 )with ascites/IC(50 )without ascites > 2 was associated with shorter disease-free interval.

Conclusions: The prosurvival activity of ascites against TRAIL is associated with shorter disease-free interval, which may be explained, at least in part, by ascites-induced cisplatin/paclitaxel resistance. Our findings suggest that ascites may contain prosurvival factors that protect against TRAIL and chemotherapy and consequently affect disease progression.

No MeSH data available.


Related in: MedlinePlus

Effect of peritoneal fluids on TRAIL-induced cell death in CaOV3 cells. (a) CaOV3 cells were pre-incubated for 2 h with OVC509 and OVC361 ascites (10% v/v) obtained from women with advanced serous ovarian cancer and treated with TRAIL (10 ng/ml) for 48 h. Cell viability was measured by XTT assay. Data are shown as the percent cell viability relative to untreated (no TRAIL, no ascites) cells. Results are from three independent experiments done in triplicate and express as mean ± SEM. (b) TRAIL IC50 was determined by XTT assay and defined as the concentration of TRAIL required to kill 50% of CaOV3 cells in the presence or absence of a specific ascites. The prosurvival activity of ovarian cancer ascites and benign fluids was determined by their ability to increase TRAIL IC50 after 48 h compared to the TRAIL IC50 of CaOV3 cells not exposed to peritoneal fluids. A value of 1 indicates a neutral effect of ascites on TRAIL-induced cytoxicity.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2821314&req=5

Figure 1: Effect of peritoneal fluids on TRAIL-induced cell death in CaOV3 cells. (a) CaOV3 cells were pre-incubated for 2 h with OVC509 and OVC361 ascites (10% v/v) obtained from women with advanced serous ovarian cancer and treated with TRAIL (10 ng/ml) for 48 h. Cell viability was measured by XTT assay. Data are shown as the percent cell viability relative to untreated (no TRAIL, no ascites) cells. Results are from three independent experiments done in triplicate and express as mean ± SEM. (b) TRAIL IC50 was determined by XTT assay and defined as the concentration of TRAIL required to kill 50% of CaOV3 cells in the presence or absence of a specific ascites. The prosurvival activity of ovarian cancer ascites and benign fluids was determined by their ability to increase TRAIL IC50 after 48 h compared to the TRAIL IC50 of CaOV3 cells not exposed to peritoneal fluids. A value of 1 indicates a neutral effect of ascites on TRAIL-induced cytoxicity.

Mentions: We have previously demonstrated that TRAIL-induced apoptosis was inhibited by the presence of ascites in ovarian cancer cell lines CaOV3 and OVCAR3 as a consequence of Akt activation and up-regulation of c-FLIPS, an inhibitor of TRAIL-induced caspase-8 activation [10]. To determine whether the inhibitory effect on TRAIL is a common property of ascites, we analyzed 54 peritoneal fluids. From June 2003 to December 2008, peritoneal fluids from patients undergoing surgery by the gynecologic oncology service at the Centre Hospitalier Universitaire de Sherbrooke for suspected neoplasia were obtained. Tissue biopsies were available for all patients and diseases were classified as benign or malignant according to the histology. To characterize the prosurvival activity of the peritoneal fluids against TRAIL, we assessed the cell viability in the presence or absence of peritoneal fluids at increasing concentrations of TRAIL. Fluids were added to ovarian cancer cell line CaOV3 at 10% of the total assay volume based on our previous study [10]. The characteristics of ascites are shown in Additional file 1, Table S1. Forty four fluids originated from patients with ovarian cancer and 10 were considered benign. Among malignant ascites, most were from patients with serous adenocarcinoma (60%). The protection against TRAIL-induced cell death varied according to peritoneal fluids and examples with OVC509 and OVC 361 ascites are shown in Fig. 1A. OVC509 significantly inhibited TRAIL-induced cell death in CaOV3 cells whereas OVC361 did not. TRAIL IC50 was determined from these cell viability curves done with the CaOV3 cell line. The anti-apoptotic activity of ovarian cancer ascites and benign fluids was expressed as TRAIL IC50 with ascites/IC50 without ascites and is shown in Fig. 1B. Ovarian cancer ascites were generally more protective than fluids from non-malignant diseases (mean IC50 increase 2.0 versus 1.25; P = 0.02). Most of the 44 ovarian cancer ascites (82%) led to some degree of inhibition of TRAIL-induced apoptosis as demonstrated by an increase of TRAIL IC50 with ascites > 1.25 fold while the few remaining did not affect the TRAIL sensitivity of CaOV3 cells (neutral effect). By comparison, 60% of benign fluids displayed an increase of TRAIL IC50 > 1.25 fold. It should be noted that we have previously shown that the presence of FBS 10% or conditioned medium from ovarian cancer cells do not affect TRAIL-induced cell death [10]. Furthermore, the anti-apoptotic effect of ascites was almost completely abolished by Akt inhibition in CaOV3 cells [10]. All together, these data demonstrate that most ovarian cancer ascites have an inhibitory effect on TRAIL-induced cell death. The magnitude of this effect however was heterogeneous among ascites. The prosurvival activity of ascites against TRAIL was not associated with a specific tumor sub-type.


The prosurvival activity of ascites against TRAIL is associated with a shorter disease-free interval in patients with ovarian cancer.

Lane D, Matte I, Rancourt C, Piché A - J Ovarian Res (2010)

Effect of peritoneal fluids on TRAIL-induced cell death in CaOV3 cells. (a) CaOV3 cells were pre-incubated for 2 h with OVC509 and OVC361 ascites (10% v/v) obtained from women with advanced serous ovarian cancer and treated with TRAIL (10 ng/ml) for 48 h. Cell viability was measured by XTT assay. Data are shown as the percent cell viability relative to untreated (no TRAIL, no ascites) cells. Results are from three independent experiments done in triplicate and express as mean ± SEM. (b) TRAIL IC50 was determined by XTT assay and defined as the concentration of TRAIL required to kill 50% of CaOV3 cells in the presence or absence of a specific ascites. The prosurvival activity of ovarian cancer ascites and benign fluids was determined by their ability to increase TRAIL IC50 after 48 h compared to the TRAIL IC50 of CaOV3 cells not exposed to peritoneal fluids. A value of 1 indicates a neutral effect of ascites on TRAIL-induced cytoxicity.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2821314&req=5

Figure 1: Effect of peritoneal fluids on TRAIL-induced cell death in CaOV3 cells. (a) CaOV3 cells were pre-incubated for 2 h with OVC509 and OVC361 ascites (10% v/v) obtained from women with advanced serous ovarian cancer and treated with TRAIL (10 ng/ml) for 48 h. Cell viability was measured by XTT assay. Data are shown as the percent cell viability relative to untreated (no TRAIL, no ascites) cells. Results are from three independent experiments done in triplicate and express as mean ± SEM. (b) TRAIL IC50 was determined by XTT assay and defined as the concentration of TRAIL required to kill 50% of CaOV3 cells in the presence or absence of a specific ascites. The prosurvival activity of ovarian cancer ascites and benign fluids was determined by their ability to increase TRAIL IC50 after 48 h compared to the TRAIL IC50 of CaOV3 cells not exposed to peritoneal fluids. A value of 1 indicates a neutral effect of ascites on TRAIL-induced cytoxicity.
Mentions: We have previously demonstrated that TRAIL-induced apoptosis was inhibited by the presence of ascites in ovarian cancer cell lines CaOV3 and OVCAR3 as a consequence of Akt activation and up-regulation of c-FLIPS, an inhibitor of TRAIL-induced caspase-8 activation [10]. To determine whether the inhibitory effect on TRAIL is a common property of ascites, we analyzed 54 peritoneal fluids. From June 2003 to December 2008, peritoneal fluids from patients undergoing surgery by the gynecologic oncology service at the Centre Hospitalier Universitaire de Sherbrooke for suspected neoplasia were obtained. Tissue biopsies were available for all patients and diseases were classified as benign or malignant according to the histology. To characterize the prosurvival activity of the peritoneal fluids against TRAIL, we assessed the cell viability in the presence or absence of peritoneal fluids at increasing concentrations of TRAIL. Fluids were added to ovarian cancer cell line CaOV3 at 10% of the total assay volume based on our previous study [10]. The characteristics of ascites are shown in Additional file 1, Table S1. Forty four fluids originated from patients with ovarian cancer and 10 were considered benign. Among malignant ascites, most were from patients with serous adenocarcinoma (60%). The protection against TRAIL-induced cell death varied according to peritoneal fluids and examples with OVC509 and OVC 361 ascites are shown in Fig. 1A. OVC509 significantly inhibited TRAIL-induced cell death in CaOV3 cells whereas OVC361 did not. TRAIL IC50 was determined from these cell viability curves done with the CaOV3 cell line. The anti-apoptotic activity of ovarian cancer ascites and benign fluids was expressed as TRAIL IC50 with ascites/IC50 without ascites and is shown in Fig. 1B. Ovarian cancer ascites were generally more protective than fluids from non-malignant diseases (mean IC50 increase 2.0 versus 1.25; P = 0.02). Most of the 44 ovarian cancer ascites (82%) led to some degree of inhibition of TRAIL-induced apoptosis as demonstrated by an increase of TRAIL IC50 with ascites > 1.25 fold while the few remaining did not affect the TRAIL sensitivity of CaOV3 cells (neutral effect). By comparison, 60% of benign fluids displayed an increase of TRAIL IC50 > 1.25 fold. It should be noted that we have previously shown that the presence of FBS 10% or conditioned medium from ovarian cancer cells do not affect TRAIL-induced cell death [10]. Furthermore, the anti-apoptotic effect of ascites was almost completely abolished by Akt inhibition in CaOV3 cells [10]. All together, these data demonstrate that most ovarian cancer ascites have an inhibitory effect on TRAIL-induced cell death. The magnitude of this effect however was heterogeneous among ascites. The prosurvival activity of ascites against TRAIL was not associated with a specific tumor sub-type.

Bottom Line: The effect of ascites on cisplatin- and paclitaxel-induced cell death was assessed with 4 ascites having inhibitory effect on TRAIL-induced cell death and 2 that do not.Among a cohort of 35 patients with ascites, a threshold of TRAIL IC(50 )with ascites/IC(50 )without ascites > 2 was associated with shorter disease-free interval.The prosurvival activity of ascites against TRAIL is associated with shorter disease-free interval, which may be explained, at least in part, by ascites-induced cisplatin/paclitaxel resistance.

View Article: PubMed Central - HTML - PubMed

Affiliation: Département de Microbiologie et Infectiologie, Faculté de Médecine, Université de Sherbrooke, 3001, 12ième Avenue Nord, Sherbrooke, J1H 5N4, Canada.

ABSTRACT

Background: The production of ascites is a common complication of ovarian cancer. Ascites constitute a unique tumor microenvironment that may affect disease progression. In this context, we recently showed that ovarian cancer ascites may protect tumor cells from TRAIL-induced apoptosis. In this study, we sought to determine whether the prosurvival effect of ascites affects disease-free intervals.

Methods: Peritoneal fluids were obtained from 54 women undergoing intra-abdominal surgery for suspected ovarian cancer (44 cancers and 10 benign diseases). The ability of peritoneal fluids to protect from TRAIL was assessed in the ovarian cancer cell line CaOV3, and IC(50 )were determined. The anti-apoptotic activity of 6 ascites against cisplatin, paclitaxel, doxorubicin, etoposide and vinorelbine was also assessed in CaOV3 cells, and the prosurvival activity of two ascites was assessed in 9 primary ovarian cancer cultures.

Results: Among the 54 peritoneal fluids tested, inhibition of TRAIL cytotoxicity was variable. Fluids originating from ovarian cancer were generally more protective than fluids from non-malignant diseases. Most of the 44 ovarian cancer ascites increased TRAIL IC(50 )and this inhibitory effect did not correlate strongly with the protein concentration in these ascites or the levels of serum CA125, a tumor antigen which is used in the clinic as a marker of tumor burden. The effect of ascites on cisplatin- and paclitaxel-induced cell death was assessed with 4 ascites having inhibitory effect on TRAIL-induced cell death and 2 that do not. The four ascites with prosurvival activity against TRAIL had some inhibitory on cisplatin and/or paclitaxel. Two ovarian cancer ascites, OVC346 and OVC509, also inhibited TRAIL cytotoxicity in 9 primary cultures of ovarian tumor and induced Akt activation in three of these primary cultures. Among a cohort of 35 patients with ascites, a threshold of TRAIL IC(50 )with ascites/IC(50 )without ascites > 2 was associated with shorter disease-free interval.

Conclusions: The prosurvival activity of ascites against TRAIL is associated with shorter disease-free interval, which may be explained, at least in part, by ascites-induced cisplatin/paclitaxel resistance. Our findings suggest that ascites may contain prosurvival factors that protect against TRAIL and chemotherapy and consequently affect disease progression.

No MeSH data available.


Related in: MedlinePlus