Limits...
Bridging the Divide between Neuroprosthetic Design, Tissue Engineering and Neurobiology.

Leach JB, Achyuta AK, Murthy SK - Front Neuroeng (2010)

Bottom Line: Neuroprosthetic devices have made a major impact in the treatment of a variety of disorders such as paralysis and stroke.Within the context of the device-nervous system interface and central nervous system implants, areas of synergistic opportunity are discussed, including platforms to present cells with multiple cues, controlled delivery of bioactive factors, three-dimensional constructs and in vitro models of gliosis and brain injury, nerve regeneration strategies, and neural stem/progenitor cell biology.Finally, recent insights gained from the fields of developmental neurobiology and cancer biology are discussed as examples of exciting new biological knowledge that may provide fresh inspiration toward novel technologies to address the complexities associated with long-term neuroprosthetic device performance.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemical and Biochemical Engineering, University of Maryland Baltimore, MD, USA.

ABSTRACT
Neuroprosthetic devices have made a major impact in the treatment of a variety of disorders such as paralysis and stroke. However, a major impediment in the advancement of this technology is the challenge of maintaining device performance during chronic implantation (months to years) due to complex intrinsic host responses such as gliosis or glial scarring. The objective of this review is to bring together research communities in neurobiology, tissue engineering, and neuroprosthetics to address the major obstacles encountered in the translation of neuroprosthetics technology into long-term clinical use. This article draws connections between specific challenges faced by current neuroprosthetics technology and recent advances in the areas of nerve tissue engineering and neurobiology. Within the context of the device-nervous system interface and central nervous system implants, areas of synergistic opportunity are discussed, including platforms to present cells with multiple cues, controlled delivery of bioactive factors, three-dimensional constructs and in vitro models of gliosis and brain injury, nerve regeneration strategies, and neural stem/progenitor cell biology. Finally, recent insights gained from the fields of developmental neurobiology and cancer biology are discussed as examples of exciting new biological knowledge that may provide fresh inspiration toward novel technologies to address the complexities associated with long-term neuroprosthetic device performance.

No MeSH data available.


Related in: MedlinePlus

The BrainGate® neural interface system created by Cyberkinetics Corp described by Hochberg et al.(2006). (A) Shows the device assembly consisting of the sensor resting on a U.S. penny, a 13-cm ribbon cable, and a percutaneous titanium pedestal which is secured to the skull. (B) Scanning electron micrograph of the probe, which is a 100-electrode Utah Array. (C) T1-weighted brain MRI of a tetraplegic patient showing the approximate location of the sensor implant site. (D) The first participant in the device trial showing complete external instrumentation of the BrainGate® system which allows him to move a computer mouse pointer on a screen toward the orange square directed solely by intent. Reprinted by permission from Macmillan Publishers Ltd: Nature 442, 164–171, copyright 2006.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2821180&req=5

Figure 1: The BrainGate® neural interface system created by Cyberkinetics Corp described by Hochberg et al.(2006). (A) Shows the device assembly consisting of the sensor resting on a U.S. penny, a 13-cm ribbon cable, and a percutaneous titanium pedestal which is secured to the skull. (B) Scanning electron micrograph of the probe, which is a 100-electrode Utah Array. (C) T1-weighted brain MRI of a tetraplegic patient showing the approximate location of the sensor implant site. (D) The first participant in the device trial showing complete external instrumentation of the BrainGate® system which allows him to move a computer mouse pointer on a screen toward the orange square directed solely by intent. Reprinted by permission from Macmillan Publishers Ltd: Nature 442, 164–171, copyright 2006.

Mentions: Neuroprosthetic device technology has seen major advances in recent years but the full potential of these devices remains unrealized due to outstanding challenges, such as the ability to record consistently over long periods of time. Existing data relates this signal reliability problem to an intrinsic host tissue response upon neuroelectrode implantation, namely glial scarring or gliosis, which involves a complex series of events that occur following implantation and whose effects influence device performance over long periods of time. The fabrication, implantation, and operation of neuroprosthetic devices are all highly complex areas in their own right and the major advances made to date in neuroprosthetics, such as the BrainGate® system developed by Cyberkinetics Corp. (Figure 1) and the Boston Retinal Implant Project (Winter et al., 2007a), are a testament to the success of numerous interdisciplinary collaborations. However, the complex biological interface between neuroprosthetic devices and the nervous system is still not completely understood, presenting both challenges as well as opportunities. Historical divisions have existed between research communities in neurobiology, tissue engineering, and neuroprosthetics but each discipline stands to benefit from the contributions of the other. For example, the neurobiology community has developed several in vivo and in vitro models to elucidate mechanistic aspects of central nervous system (CNS) wound healing. The tissue engineering community has devised tools to regenerate tissue using novel three-dimensional (3-D) constructs, scaffolds, and bioreactors. The neuroprosthetics community has developed a wide range of highly sophisticated stimulating and recording devices and demonstrated their efficacy with primate and human trials.


Bridging the Divide between Neuroprosthetic Design, Tissue Engineering and Neurobiology.

Leach JB, Achyuta AK, Murthy SK - Front Neuroeng (2010)

The BrainGate® neural interface system created by Cyberkinetics Corp described by Hochberg et al.(2006). (A) Shows the device assembly consisting of the sensor resting on a U.S. penny, a 13-cm ribbon cable, and a percutaneous titanium pedestal which is secured to the skull. (B) Scanning electron micrograph of the probe, which is a 100-electrode Utah Array. (C) T1-weighted brain MRI of a tetraplegic patient showing the approximate location of the sensor implant site. (D) The first participant in the device trial showing complete external instrumentation of the BrainGate® system which allows him to move a computer mouse pointer on a screen toward the orange square directed solely by intent. Reprinted by permission from Macmillan Publishers Ltd: Nature 442, 164–171, copyright 2006.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2821180&req=5

Figure 1: The BrainGate® neural interface system created by Cyberkinetics Corp described by Hochberg et al.(2006). (A) Shows the device assembly consisting of the sensor resting on a U.S. penny, a 13-cm ribbon cable, and a percutaneous titanium pedestal which is secured to the skull. (B) Scanning electron micrograph of the probe, which is a 100-electrode Utah Array. (C) T1-weighted brain MRI of a tetraplegic patient showing the approximate location of the sensor implant site. (D) The first participant in the device trial showing complete external instrumentation of the BrainGate® system which allows him to move a computer mouse pointer on a screen toward the orange square directed solely by intent. Reprinted by permission from Macmillan Publishers Ltd: Nature 442, 164–171, copyright 2006.
Mentions: Neuroprosthetic device technology has seen major advances in recent years but the full potential of these devices remains unrealized due to outstanding challenges, such as the ability to record consistently over long periods of time. Existing data relates this signal reliability problem to an intrinsic host tissue response upon neuroelectrode implantation, namely glial scarring or gliosis, which involves a complex series of events that occur following implantation and whose effects influence device performance over long periods of time. The fabrication, implantation, and operation of neuroprosthetic devices are all highly complex areas in their own right and the major advances made to date in neuroprosthetics, such as the BrainGate® system developed by Cyberkinetics Corp. (Figure 1) and the Boston Retinal Implant Project (Winter et al., 2007a), are a testament to the success of numerous interdisciplinary collaborations. However, the complex biological interface between neuroprosthetic devices and the nervous system is still not completely understood, presenting both challenges as well as opportunities. Historical divisions have existed between research communities in neurobiology, tissue engineering, and neuroprosthetics but each discipline stands to benefit from the contributions of the other. For example, the neurobiology community has developed several in vivo and in vitro models to elucidate mechanistic aspects of central nervous system (CNS) wound healing. The tissue engineering community has devised tools to regenerate tissue using novel three-dimensional (3-D) constructs, scaffolds, and bioreactors. The neuroprosthetics community has developed a wide range of highly sophisticated stimulating and recording devices and demonstrated their efficacy with primate and human trials.

Bottom Line: Neuroprosthetic devices have made a major impact in the treatment of a variety of disorders such as paralysis and stroke.Within the context of the device-nervous system interface and central nervous system implants, areas of synergistic opportunity are discussed, including platforms to present cells with multiple cues, controlled delivery of bioactive factors, three-dimensional constructs and in vitro models of gliosis and brain injury, nerve regeneration strategies, and neural stem/progenitor cell biology.Finally, recent insights gained from the fields of developmental neurobiology and cancer biology are discussed as examples of exciting new biological knowledge that may provide fresh inspiration toward novel technologies to address the complexities associated with long-term neuroprosthetic device performance.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemical and Biochemical Engineering, University of Maryland Baltimore, MD, USA.

ABSTRACT
Neuroprosthetic devices have made a major impact in the treatment of a variety of disorders such as paralysis and stroke. However, a major impediment in the advancement of this technology is the challenge of maintaining device performance during chronic implantation (months to years) due to complex intrinsic host responses such as gliosis or glial scarring. The objective of this review is to bring together research communities in neurobiology, tissue engineering, and neuroprosthetics to address the major obstacles encountered in the translation of neuroprosthetics technology into long-term clinical use. This article draws connections between specific challenges faced by current neuroprosthetics technology and recent advances in the areas of nerve tissue engineering and neurobiology. Within the context of the device-nervous system interface and central nervous system implants, areas of synergistic opportunity are discussed, including platforms to present cells with multiple cues, controlled delivery of bioactive factors, three-dimensional constructs and in vitro models of gliosis and brain injury, nerve regeneration strategies, and neural stem/progenitor cell biology. Finally, recent insights gained from the fields of developmental neurobiology and cancer biology are discussed as examples of exciting new biological knowledge that may provide fresh inspiration toward novel technologies to address the complexities associated with long-term neuroprosthetic device performance.

No MeSH data available.


Related in: MedlinePlus