Limits...
Testing the hypothesis of fire use for ecosystem management by neanderthal and upper palaeolithic modern human populations.

Daniau AL, d'Errico F, Sánchez Goñi MF - PLoS ONE (2010)

Bottom Line: It has been proposed that a greater control and more extensive use of fire was one of the behavioral innovations that emerged in Africa among early Modern Humans, favouring their spread throughout the world and determining their eventual evolutionary success.Results indicate that fire regime follows the Dansgaard-Oeschger climatic variability and its impacts on fuel load.No major disturbance in natural fire regime variability is observed at the time of the arrival of Modern Humans in Europe or during the remainder of the Upper Palaeolithic (40-10 kyr cal BP).

View Article: PubMed Central - PubMed

Affiliation: EPHE, CNRS UMR5805, EPOC, Université Bordeaux 1, Talence, France. al.daniau@bristol.ac.uk

ABSTRACT

Background: It has been proposed that a greater control and more extensive use of fire was one of the behavioral innovations that emerged in Africa among early Modern Humans, favouring their spread throughout the world and determining their eventual evolutionary success. We would expect, if extensive fire use for ecosystem management were a component of the modern human technical and cognitive package, as suggested for Australia, to find major disturbances in the natural biomass burning variability associated with the colonisation of Europe by Modern Humans.

Methodology/principal findings: Analyses of microcharcoal preserved in two deep-sea cores located off Iberia and France were used to reconstruct changes in biomass burning between 70 and 10 kyr cal BP. Results indicate that fire regime follows the Dansgaard-Oeschger climatic variability and its impacts on fuel load. No major disturbance in natural fire regime variability is observed at the time of the arrival of Modern Humans in Europe or during the remainder of the Upper Palaeolithic (40-10 kyr cal BP).

Conclusions/significance: Results indicate that either Neanderthals and Modern humans did not influence fire regime or that, if they did, their respective influence was comparable at a regional scale, and not as pronounced as that observed in the biomass burning history of Southeast Asia.

Show MeSH

Related in: MedlinePlus

Comparison between concentrations of microcharcoal surface area (CCsurf) and climatic proxies of core MD95-2042 (Southwestern Iberia) (1) and MD04-2845 (Western France) (2).All records are plotted versus age. From left to right: (a) the NorthGRIP oxygen isotopic curve [119]; Southwestern Iberia: (b) the oxygen isotopic curve of the planktonic foraminifera Globigerina bulloides reflecting sea surface temperature and salinity changes [41], (c) the concentration curve of the ice rafted debris (IRD) and (d) the percentage curve of the polar foraminifera Neogloboquadrina pachyderma (s) left coiling[38], (e) the concentrations of microcharcoal surface area (CCsurf), (f) to (h) pollen percentage curve of: temperate forest including Mediterranean plants; Ericaceae (heather); semi-desert vegetation (Artemisia, Chenopodiaceae, Ephedra). The pollen data for core MD95-2042 are from [43]. The pollen data for the interval 14–25 kyr cal BP are from the twin core SU81-18 [120]. Western France: (a) the concentration curve of IRD, (b) the percentage curve of the polar foraminifera N. pachyderma (s) left coiling, (c) the concentrations of microcharcoal surface area (CCsurf), (d-e) the pollen percentage curve of Pinus and Arboreal Pollen (mainly composed of Picea, Abies, Betula, Cupressaceae, Hippophäe, deciduous Quercus, Carpinus and Corylus; Pinus excluded: Pinus pollen type is overrepresented in marine cores which precludes its inclusion in the calculation of AP percentages [44]. Grey band indicates a sedimentary hiatus in this core. The chronological extent of the Neanderthal and Modern Human populations are reported for the two regions. Blue bands indicate Heinrich Stadials (HSs) and other Greenland Stadials (GSs). HSs are identified on the basis of peaks in ice rafted debris (IRD), high percentages of the polar foraminifera (N. pachyderma (s.) and AMS 14C ages. GI numbers indicates Greenland Interstadials.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2820084&req=5

pone-0009157-g002: Comparison between concentrations of microcharcoal surface area (CCsurf) and climatic proxies of core MD95-2042 (Southwestern Iberia) (1) and MD04-2845 (Western France) (2).All records are plotted versus age. From left to right: (a) the NorthGRIP oxygen isotopic curve [119]; Southwestern Iberia: (b) the oxygen isotopic curve of the planktonic foraminifera Globigerina bulloides reflecting sea surface temperature and salinity changes [41], (c) the concentration curve of the ice rafted debris (IRD) and (d) the percentage curve of the polar foraminifera Neogloboquadrina pachyderma (s) left coiling[38], (e) the concentrations of microcharcoal surface area (CCsurf), (f) to (h) pollen percentage curve of: temperate forest including Mediterranean plants; Ericaceae (heather); semi-desert vegetation (Artemisia, Chenopodiaceae, Ephedra). The pollen data for core MD95-2042 are from [43]. The pollen data for the interval 14–25 kyr cal BP are from the twin core SU81-18 [120]. Western France: (a) the concentration curve of IRD, (b) the percentage curve of the polar foraminifera N. pachyderma (s) left coiling, (c) the concentrations of microcharcoal surface area (CCsurf), (d-e) the pollen percentage curve of Pinus and Arboreal Pollen (mainly composed of Picea, Abies, Betula, Cupressaceae, Hippophäe, deciduous Quercus, Carpinus and Corylus; Pinus excluded: Pinus pollen type is overrepresented in marine cores which precludes its inclusion in the calculation of AP percentages [44]. Grey band indicates a sedimentary hiatus in this core. The chronological extent of the Neanderthal and Modern Human populations are reported for the two regions. Blue bands indicate Heinrich Stadials (HSs) and other Greenland Stadials (GSs). HSs are identified on the basis of peaks in ice rafted debris (IRD), high percentages of the polar foraminifera (N. pachyderma (s.) and AMS 14C ages. GI numbers indicates Greenland Interstadials.

Mentions: Climatically, the beginning of the Aurignacian (figure 2) in France has been related to the onset of the HS 4 (36.5 kyr 14C BP; ca 40 kyr cal BP), or the temperate phases (GIs 9–10) immediately preceding HS 4 [52], [61]. Radiocarbon dates indicate this culture persisted in Europe during the following temperate GIs 5–8 and cold/dry episodes preceding HS 3. Iberia represents, perhaps with other areas of Europe, a special case. The Aurignacian is attested in the North of the peninsula since at least 36.5 kyr 14C BP but absent in the South of Iberia before 33.5 kyr 14C BP (ca 38 kyr cal. BP), i.e. before HS 4 [58], [61] (figure 2). Although a few Mousterian sites seem to persist in Northern Iberia shortly after the emergence of the Aurignacian [62], [63] no archeologically detectable traces of this technology are found in the North after the HS 4. Neanderthals, in contrast, persist in the Southern Iberia at least until 30–32 kyr 14C BP [52], [61], [64], [65], which covers GI 8 and GI 5 event (figure 2). The gap between the North and the South is generally interpreted as evidence for a delayed colonisation of Southern Iberia by Modern Humans. The aridity and consequent low biomass produced by the HS 4 event on Central and Southern Iberia have been proposed as the main reasons for the late arrival of Modern Humans in the South [61], [66], [67]. For the sake of this study we accept the consensual view that Neanderthal demise occurred at ca. 34–33 kyr 14C BP in Western Europe and at ca. 30 kyr 14C BP in the South of Iberia.


Testing the hypothesis of fire use for ecosystem management by neanderthal and upper palaeolithic modern human populations.

Daniau AL, d'Errico F, Sánchez Goñi MF - PLoS ONE (2010)

Comparison between concentrations of microcharcoal surface area (CCsurf) and climatic proxies of core MD95-2042 (Southwestern Iberia) (1) and MD04-2845 (Western France) (2).All records are plotted versus age. From left to right: (a) the NorthGRIP oxygen isotopic curve [119]; Southwestern Iberia: (b) the oxygen isotopic curve of the planktonic foraminifera Globigerina bulloides reflecting sea surface temperature and salinity changes [41], (c) the concentration curve of the ice rafted debris (IRD) and (d) the percentage curve of the polar foraminifera Neogloboquadrina pachyderma (s) left coiling[38], (e) the concentrations of microcharcoal surface area (CCsurf), (f) to (h) pollen percentage curve of: temperate forest including Mediterranean plants; Ericaceae (heather); semi-desert vegetation (Artemisia, Chenopodiaceae, Ephedra). The pollen data for core MD95-2042 are from [43]. The pollen data for the interval 14–25 kyr cal BP are from the twin core SU81-18 [120]. Western France: (a) the concentration curve of IRD, (b) the percentage curve of the polar foraminifera N. pachyderma (s) left coiling, (c) the concentrations of microcharcoal surface area (CCsurf), (d-e) the pollen percentage curve of Pinus and Arboreal Pollen (mainly composed of Picea, Abies, Betula, Cupressaceae, Hippophäe, deciduous Quercus, Carpinus and Corylus; Pinus excluded: Pinus pollen type is overrepresented in marine cores which precludes its inclusion in the calculation of AP percentages [44]. Grey band indicates a sedimentary hiatus in this core. The chronological extent of the Neanderthal and Modern Human populations are reported for the two regions. Blue bands indicate Heinrich Stadials (HSs) and other Greenland Stadials (GSs). HSs are identified on the basis of peaks in ice rafted debris (IRD), high percentages of the polar foraminifera (N. pachyderma (s.) and AMS 14C ages. GI numbers indicates Greenland Interstadials.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2820084&req=5

pone-0009157-g002: Comparison between concentrations of microcharcoal surface area (CCsurf) and climatic proxies of core MD95-2042 (Southwestern Iberia) (1) and MD04-2845 (Western France) (2).All records are plotted versus age. From left to right: (a) the NorthGRIP oxygen isotopic curve [119]; Southwestern Iberia: (b) the oxygen isotopic curve of the planktonic foraminifera Globigerina bulloides reflecting sea surface temperature and salinity changes [41], (c) the concentration curve of the ice rafted debris (IRD) and (d) the percentage curve of the polar foraminifera Neogloboquadrina pachyderma (s) left coiling[38], (e) the concentrations of microcharcoal surface area (CCsurf), (f) to (h) pollen percentage curve of: temperate forest including Mediterranean plants; Ericaceae (heather); semi-desert vegetation (Artemisia, Chenopodiaceae, Ephedra). The pollen data for core MD95-2042 are from [43]. The pollen data for the interval 14–25 kyr cal BP are from the twin core SU81-18 [120]. Western France: (a) the concentration curve of IRD, (b) the percentage curve of the polar foraminifera N. pachyderma (s) left coiling, (c) the concentrations of microcharcoal surface area (CCsurf), (d-e) the pollen percentage curve of Pinus and Arboreal Pollen (mainly composed of Picea, Abies, Betula, Cupressaceae, Hippophäe, deciduous Quercus, Carpinus and Corylus; Pinus excluded: Pinus pollen type is overrepresented in marine cores which precludes its inclusion in the calculation of AP percentages [44]. Grey band indicates a sedimentary hiatus in this core. The chronological extent of the Neanderthal and Modern Human populations are reported for the two regions. Blue bands indicate Heinrich Stadials (HSs) and other Greenland Stadials (GSs). HSs are identified on the basis of peaks in ice rafted debris (IRD), high percentages of the polar foraminifera (N. pachyderma (s.) and AMS 14C ages. GI numbers indicates Greenland Interstadials.
Mentions: Climatically, the beginning of the Aurignacian (figure 2) in France has been related to the onset of the HS 4 (36.5 kyr 14C BP; ca 40 kyr cal BP), or the temperate phases (GIs 9–10) immediately preceding HS 4 [52], [61]. Radiocarbon dates indicate this culture persisted in Europe during the following temperate GIs 5–8 and cold/dry episodes preceding HS 3. Iberia represents, perhaps with other areas of Europe, a special case. The Aurignacian is attested in the North of the peninsula since at least 36.5 kyr 14C BP but absent in the South of Iberia before 33.5 kyr 14C BP (ca 38 kyr cal. BP), i.e. before HS 4 [58], [61] (figure 2). Although a few Mousterian sites seem to persist in Northern Iberia shortly after the emergence of the Aurignacian [62], [63] no archeologically detectable traces of this technology are found in the North after the HS 4. Neanderthals, in contrast, persist in the Southern Iberia at least until 30–32 kyr 14C BP [52], [61], [64], [65], which covers GI 8 and GI 5 event (figure 2). The gap between the North and the South is generally interpreted as evidence for a delayed colonisation of Southern Iberia by Modern Humans. The aridity and consequent low biomass produced by the HS 4 event on Central and Southern Iberia have been proposed as the main reasons for the late arrival of Modern Humans in the South [61], [66], [67]. For the sake of this study we accept the consensual view that Neanderthal demise occurred at ca. 34–33 kyr 14C BP in Western Europe and at ca. 30 kyr 14C BP in the South of Iberia.

Bottom Line: It has been proposed that a greater control and more extensive use of fire was one of the behavioral innovations that emerged in Africa among early Modern Humans, favouring their spread throughout the world and determining their eventual evolutionary success.Results indicate that fire regime follows the Dansgaard-Oeschger climatic variability and its impacts on fuel load.No major disturbance in natural fire regime variability is observed at the time of the arrival of Modern Humans in Europe or during the remainder of the Upper Palaeolithic (40-10 kyr cal BP).

View Article: PubMed Central - PubMed

Affiliation: EPHE, CNRS UMR5805, EPOC, Université Bordeaux 1, Talence, France. al.daniau@bristol.ac.uk

ABSTRACT

Background: It has been proposed that a greater control and more extensive use of fire was one of the behavioral innovations that emerged in Africa among early Modern Humans, favouring their spread throughout the world and determining their eventual evolutionary success. We would expect, if extensive fire use for ecosystem management were a component of the modern human technical and cognitive package, as suggested for Australia, to find major disturbances in the natural biomass burning variability associated with the colonisation of Europe by Modern Humans.

Methodology/principal findings: Analyses of microcharcoal preserved in two deep-sea cores located off Iberia and France were used to reconstruct changes in biomass burning between 70 and 10 kyr cal BP. Results indicate that fire regime follows the Dansgaard-Oeschger climatic variability and its impacts on fuel load. No major disturbance in natural fire regime variability is observed at the time of the arrival of Modern Humans in Europe or during the remainder of the Upper Palaeolithic (40-10 kyr cal BP).

Conclusions/significance: Results indicate that either Neanderthals and Modern humans did not influence fire regime or that, if they did, their respective influence was comparable at a regional scale, and not as pronounced as that observed in the biomass burning history of Southeast Asia.

Show MeSH
Related in: MedlinePlus