Limits...
White-matter abnormalities in brain during early abstinence from methamphetamine abuse.

Tobias MC, O'Neill J, Hudkins M, Bartzokis G, Dean AC, London ED - Psychopharmacology (Berl.) (2010)

Bottom Line: The methamphetamine group exhibited lower FA in right prefrontal white matter above the AC-PC plane (11.9% lower; p = 0.007), in midline genu corpus callosum (3.9%; p = 0.019), in left and right midcaudal superior corona radiata (11.0% in both hemispheres, p's = 0.020 and 0.016, respectively), and in right perforant fibers (7.3%; p = 0.025).FA in left midcaudal superior corona radiata was correlated with depressive and generalized psychiatric symptoms within the methamphetamine group.These effects are already present during the first weeks of abstinence from methamphetamine and are linked to psychiatric symptoms assessed during this period.

View Article: PubMed Central - PubMed

Affiliation: Semel Institute for Neuroscience and Biobehavioral Studies, University of California Los Angeles, Los Angeles, CA, USA.

ABSTRACT

Background: Previous studies revealed microstructural abnormalities in prefrontal white matter and corpus callosum of long-term abstinent chronic methamphetamine abusers. In view of the importance of the early abstinence period in treatment retention, we compared 23 methamphetamine-dependent subjects abstinent from methamphetamine for 7-13 days with 18 healthy comparison subjects. As certain metabolic changes in the brain first manifest after early abstinence from methamphetamine, it is also possible that microstructural white-matter abnormalities are not yet present during early abstinence.

Methods: Using diffusion tensor imaging at 1.5 T, fractional anisotropy (FA) was measured in prefrontal white matter at four inferior-superior levels parallel to the anterior commissure-posterior commissure (AC-PC) plane. We also sampled FA in the corpus callosum at the midline and at eight bilateral, fiber-tract sites in other regions implicated in effects of methamphetamine.

Results: The methamphetamine group exhibited lower FA in right prefrontal white matter above the AC-PC plane (11.9% lower; p = 0.007), in midline genu corpus callosum (3.9%; p = 0.019), in left and right midcaudal superior corona radiata (11.0% in both hemispheres, p's = 0.020 and 0.016, respectively), and in right perforant fibers (7.3%; p = 0.025). FA in left midcaudal superior corona radiata was correlated with depressive and generalized psychiatric symptoms within the methamphetamine group.

Conclusions: The findings support the idea that methamphetamine abuse produces microstructural abnormalities in white matter underlying and interconnecting prefrontal cortices and hippocampal formation. These effects are already present during the first weeks of abstinence from methamphetamine and are linked to psychiatric symptoms assessed during this period.

Show MeSH

Related in: MedlinePlus

Axial-oblique (parallel to AC–PC plane) DTI FA brain map at level of the upper lateral ventricles from a study subject. The same image is shown in both left and right. In the left, the green arrow indicates typical site of DTI voxel selection for the midcaudal cross section of the right superior corona radiata white-matter region. In the right, the green arrow indicates typical site for the caudal cross section of the right superior corona radiata
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2819660&req=5

Fig2: Axial-oblique (parallel to AC–PC plane) DTI FA brain map at level of the upper lateral ventricles from a study subject. The same image is shown in both left and right. In the left, the green arrow indicates typical site of DTI voxel selection for the midcaudal cross section of the right superior corona radiata white-matter region. In the right, the green arrow indicates typical site for the caudal cross section of the right superior corona radiata

Mentions: The second method, previously described by Ringman et al. (2007), was used to sample DTI voxels at the following 16 fiber-tract VOIs: midline genu and midline splenium of corpus callosum; bilateral anterior, midcaudal, and caudal superior corona radiata; anterior and posterior limbs and genu of the internal capsule; and perforant path of the hippocampal formation. For each structure, the two highest adjacent FA values were recorded and averaged, whereby FA color maps indicating fiber-tract direction were used to supplement voxel selection. Anatomic voxel selection for genu and splenium corpus callosum, anterior corona radiata, and perforant path was as described (Ringman et al. 2007). The superior corona radiata appeared on superior brain slices as a thick inferior–superior tract just lateral to the lateral ventricle in each hemisphere. Voxels were selected from midcaudal and caudal cross sections of this tract at the level of the body of the corpus callosum, i.e., the level of the superior portions of the lateral ventricles (Fig. 2). For internal capsule voxels, the axial-oblique slice where the mesial–lateral distance between the genua of left and right internal capsule was minimized was identified by scrolling ventrally through the brain volume. Starting from that slice, voxels were selected bilaterally from the anterior limb, genu, and posterior limb of the internal capsule (Fig. 3).Fig. 2


White-matter abnormalities in brain during early abstinence from methamphetamine abuse.

Tobias MC, O'Neill J, Hudkins M, Bartzokis G, Dean AC, London ED - Psychopharmacology (Berl.) (2010)

Axial-oblique (parallel to AC–PC plane) DTI FA brain map at level of the upper lateral ventricles from a study subject. The same image is shown in both left and right. In the left, the green arrow indicates typical site of DTI voxel selection for the midcaudal cross section of the right superior corona radiata white-matter region. In the right, the green arrow indicates typical site for the caudal cross section of the right superior corona radiata
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2819660&req=5

Fig2: Axial-oblique (parallel to AC–PC plane) DTI FA brain map at level of the upper lateral ventricles from a study subject. The same image is shown in both left and right. In the left, the green arrow indicates typical site of DTI voxel selection for the midcaudal cross section of the right superior corona radiata white-matter region. In the right, the green arrow indicates typical site for the caudal cross section of the right superior corona radiata
Mentions: The second method, previously described by Ringman et al. (2007), was used to sample DTI voxels at the following 16 fiber-tract VOIs: midline genu and midline splenium of corpus callosum; bilateral anterior, midcaudal, and caudal superior corona radiata; anterior and posterior limbs and genu of the internal capsule; and perforant path of the hippocampal formation. For each structure, the two highest adjacent FA values were recorded and averaged, whereby FA color maps indicating fiber-tract direction were used to supplement voxel selection. Anatomic voxel selection for genu and splenium corpus callosum, anterior corona radiata, and perforant path was as described (Ringman et al. 2007). The superior corona radiata appeared on superior brain slices as a thick inferior–superior tract just lateral to the lateral ventricle in each hemisphere. Voxels were selected from midcaudal and caudal cross sections of this tract at the level of the body of the corpus callosum, i.e., the level of the superior portions of the lateral ventricles (Fig. 2). For internal capsule voxels, the axial-oblique slice where the mesial–lateral distance between the genua of left and right internal capsule was minimized was identified by scrolling ventrally through the brain volume. Starting from that slice, voxels were selected bilaterally from the anterior limb, genu, and posterior limb of the internal capsule (Fig. 3).Fig. 2

Bottom Line: The methamphetamine group exhibited lower FA in right prefrontal white matter above the AC-PC plane (11.9% lower; p = 0.007), in midline genu corpus callosum (3.9%; p = 0.019), in left and right midcaudal superior corona radiata (11.0% in both hemispheres, p's = 0.020 and 0.016, respectively), and in right perforant fibers (7.3%; p = 0.025).FA in left midcaudal superior corona radiata was correlated with depressive and generalized psychiatric symptoms within the methamphetamine group.These effects are already present during the first weeks of abstinence from methamphetamine and are linked to psychiatric symptoms assessed during this period.

View Article: PubMed Central - PubMed

Affiliation: Semel Institute for Neuroscience and Biobehavioral Studies, University of California Los Angeles, Los Angeles, CA, USA.

ABSTRACT

Background: Previous studies revealed microstructural abnormalities in prefrontal white matter and corpus callosum of long-term abstinent chronic methamphetamine abusers. In view of the importance of the early abstinence period in treatment retention, we compared 23 methamphetamine-dependent subjects abstinent from methamphetamine for 7-13 days with 18 healthy comparison subjects. As certain metabolic changes in the brain first manifest after early abstinence from methamphetamine, it is also possible that microstructural white-matter abnormalities are not yet present during early abstinence.

Methods: Using diffusion tensor imaging at 1.5 T, fractional anisotropy (FA) was measured in prefrontal white matter at four inferior-superior levels parallel to the anterior commissure-posterior commissure (AC-PC) plane. We also sampled FA in the corpus callosum at the midline and at eight bilateral, fiber-tract sites in other regions implicated in effects of methamphetamine.

Results: The methamphetamine group exhibited lower FA in right prefrontal white matter above the AC-PC plane (11.9% lower; p = 0.007), in midline genu corpus callosum (3.9%; p = 0.019), in left and right midcaudal superior corona radiata (11.0% in both hemispheres, p's = 0.020 and 0.016, respectively), and in right perforant fibers (7.3%; p = 0.025). FA in left midcaudal superior corona radiata was correlated with depressive and generalized psychiatric symptoms within the methamphetamine group.

Conclusions: The findings support the idea that methamphetamine abuse produces microstructural abnormalities in white matter underlying and interconnecting prefrontal cortices and hippocampal formation. These effects are already present during the first weeks of abstinence from methamphetamine and are linked to psychiatric symptoms assessed during this period.

Show MeSH
Related in: MedlinePlus