Limits...
Dichlorvos exposure impedes extraction and amplification of DNA from insects in museum collections.

Espeland M, Irestedt M, Johanson KA, Akerlund M, Bergh JE, Källersjö M - Front. Zool. (2010)

Bottom Line: We thus tested the effect of dichlorvos, paradichlorobenzene and naphthalene on DNA of insects (Musca domestica) by extracting and amplifying DNA from specimens exposed to insecticides in two different concentrations over increasing time intervals.The results clearly show that dichlorvos impedes both extraction and amplification of mitochondrial and nuclear DNA after relatively short time, whereas paradichlorobenzene and naphthalene do not.Collections treated with paradichlorobenzene and naphthalene, are better preserved concerning DNA, than those treated with dichlorvos.

View Article: PubMed Central - HTML - PubMed

Affiliation: Swedish Museum of Natural History, Entomology Department, Box 50007, SE-104 05 Stockholm, Sweden.

ABSTRACT

Background: The insecticides dichlorvos, paradichlorobenzene and naphthalene have been commonly used to eradicate pest insects from natural history collections. However, it is not known how these chemicals affect the DNA of the specimens in the collections. We thus tested the effect of dichlorvos, paradichlorobenzene and naphthalene on DNA of insects (Musca domestica) by extracting and amplifying DNA from specimens exposed to insecticides in two different concentrations over increasing time intervals.

Results: The results clearly show that dichlorvos impedes both extraction and amplification of mitochondrial and nuclear DNA after relatively short time, whereas paradichlorobenzene and naphthalene do not.

Conclusion: Collections treated with paradichlorobenzene and naphthalene, are better preserved concerning DNA, than those treated with dichlorvos. Non toxic pest control methods should, however, be preferred due to physical damage of specimens and putative health risks by chemicals.

No MeSH data available.


Related in: MedlinePlus

Amplification of a 717 bp fragment of the nuclear gene EF1a. A-I) High concentration dichlorvos, A-II) High concentration paradichlorobenzene, B-I) High concentration naphthalene, B-II) Control, C-I) Low concentration dichlorvos, C-II) Low concentration paradichlorobenzene, D-I) low concentration naphthalene, D-II) Control. See Table 2 for sample intervals.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2819063&req=5

Figure 4: Amplification of a 717 bp fragment of the nuclear gene EF1a. A-I) High concentration dichlorvos, A-II) High concentration paradichlorobenzene, B-I) High concentration naphthalene, B-II) Control, C-I) Low concentration dichlorvos, C-II) Low concentration paradichlorobenzene, D-I) low concentration naphthalene, D-II) Control. See Table 2 for sample intervals.

Mentions: After 134 days (sample 12, Figure 4A-I) of dichlorvos exposure (high concentration) amplification of EF1a is considerably impeded and after 229 days (sample 14, Figure 4A-I) it is no longer possible. Amplification of COI is impeded after 229 days (sample 14, Figure 5A-I) of dichlorvos exposure (high concentration). Very weak bands are, however, visible during the whole experiment (605 days) so amplification is possible, but made more difficult. When looking at the samples exposed to lower concentration of dichlorvos the results are less conclusive but amplification of both EF1a (Figure 4C-I) and COI (Figure 5C-I) is impeded by dichlorvos even here, indicated by weaker bands, especially for EF1a, for samples treated with dichlorvos than for the controls (Figures 4B-II, 4D-II). When compared with the controls (EF1a: Figure 4B-II, 4D-II; COI: Figure 5B-II, 5D-II), naphtalene (EF1a: Figures 4B-I, 4D-1; COI: Figures 5B-I, 5D-1) and paradichlorobenzene (EF1a: Figures 4A-II, 4C-II; COI: Figures 5A-II, 5C-II) do not seem to affect the amplification of neither EF1a nor COI.


Dichlorvos exposure impedes extraction and amplification of DNA from insects in museum collections.

Espeland M, Irestedt M, Johanson KA, Akerlund M, Bergh JE, Källersjö M - Front. Zool. (2010)

Amplification of a 717 bp fragment of the nuclear gene EF1a. A-I) High concentration dichlorvos, A-II) High concentration paradichlorobenzene, B-I) High concentration naphthalene, B-II) Control, C-I) Low concentration dichlorvos, C-II) Low concentration paradichlorobenzene, D-I) low concentration naphthalene, D-II) Control. See Table 2 for sample intervals.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2819063&req=5

Figure 4: Amplification of a 717 bp fragment of the nuclear gene EF1a. A-I) High concentration dichlorvos, A-II) High concentration paradichlorobenzene, B-I) High concentration naphthalene, B-II) Control, C-I) Low concentration dichlorvos, C-II) Low concentration paradichlorobenzene, D-I) low concentration naphthalene, D-II) Control. See Table 2 for sample intervals.
Mentions: After 134 days (sample 12, Figure 4A-I) of dichlorvos exposure (high concentration) amplification of EF1a is considerably impeded and after 229 days (sample 14, Figure 4A-I) it is no longer possible. Amplification of COI is impeded after 229 days (sample 14, Figure 5A-I) of dichlorvos exposure (high concentration). Very weak bands are, however, visible during the whole experiment (605 days) so amplification is possible, but made more difficult. When looking at the samples exposed to lower concentration of dichlorvos the results are less conclusive but amplification of both EF1a (Figure 4C-I) and COI (Figure 5C-I) is impeded by dichlorvos even here, indicated by weaker bands, especially for EF1a, for samples treated with dichlorvos than for the controls (Figures 4B-II, 4D-II). When compared with the controls (EF1a: Figure 4B-II, 4D-II; COI: Figure 5B-II, 5D-II), naphtalene (EF1a: Figures 4B-I, 4D-1; COI: Figures 5B-I, 5D-1) and paradichlorobenzene (EF1a: Figures 4A-II, 4C-II; COI: Figures 5A-II, 5C-II) do not seem to affect the amplification of neither EF1a nor COI.

Bottom Line: We thus tested the effect of dichlorvos, paradichlorobenzene and naphthalene on DNA of insects (Musca domestica) by extracting and amplifying DNA from specimens exposed to insecticides in two different concentrations over increasing time intervals.The results clearly show that dichlorvos impedes both extraction and amplification of mitochondrial and nuclear DNA after relatively short time, whereas paradichlorobenzene and naphthalene do not.Collections treated with paradichlorobenzene and naphthalene, are better preserved concerning DNA, than those treated with dichlorvos.

View Article: PubMed Central - HTML - PubMed

Affiliation: Swedish Museum of Natural History, Entomology Department, Box 50007, SE-104 05 Stockholm, Sweden.

ABSTRACT

Background: The insecticides dichlorvos, paradichlorobenzene and naphthalene have been commonly used to eradicate pest insects from natural history collections. However, it is not known how these chemicals affect the DNA of the specimens in the collections. We thus tested the effect of dichlorvos, paradichlorobenzene and naphthalene on DNA of insects (Musca domestica) by extracting and amplifying DNA from specimens exposed to insecticides in two different concentrations over increasing time intervals.

Results: The results clearly show that dichlorvos impedes both extraction and amplification of mitochondrial and nuclear DNA after relatively short time, whereas paradichlorobenzene and naphthalene do not.

Conclusion: Collections treated with paradichlorobenzene and naphthalene, are better preserved concerning DNA, than those treated with dichlorvos. Non toxic pest control methods should, however, be preferred due to physical damage of specimens and putative health risks by chemicals.

No MeSH data available.


Related in: MedlinePlus