Limits...
Mode of antiviral action of silver nanoparticles against HIV-1.

Lara HH, Ayala-Nuñez NV, Ixtepan-Turrent L, Rodriguez-Padilla C - J Nanobiotechnology (2010)

Bottom Line: Our data suggest that silver nanoparticles exert anti-HIV activity at an early stage of viral replication, most likely as a virucidal agent or as an inhibitor of viral entry.Besides, silver nanoparticles inhibit post-entry stages of the HIV-1 life cycle.These properties make them a broad-spectrum agent not prone to inducing resistance that could be used preventively against a wide variety of circulating HIV-1 strains.

View Article: PubMed Central - HTML - PubMed

Affiliation: Laboratorio de Inmunología y Virología, Departamento de Microbiología e Inmunología, Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Mexico.

ABSTRACT

Background: Silver nanoparticles have proven to exert antiviral activity against HIV-1 at non-cytotoxic concentrations, but the mechanism underlying their HIV-inhibitory activity has not been not fully elucidated. In this study, silver nanoparticles are evaluated to elucidate their mode of antiviral action against HIV-1 using a panel of different in vitro assays.

Results: Our data suggest that silver nanoparticles exert anti-HIV activity at an early stage of viral replication, most likely as a virucidal agent or as an inhibitor of viral entry. Silver nanoparticles bind to gp120 in a manner that prevents CD4-dependent virion binding, fusion, and infectivity, acting as an effective virucidal agent against cell-free virus (laboratory strains, clinical isolates, T and M tropic strains, and resistant strains) and cell-associated virus. Besides, silver nanoparticles inhibit post-entry stages of the HIV-1 life cycle.

Conclusions: These properties make them a broad-spectrum agent not prone to inducing resistance that could be used preventively against a wide variety of circulating HIV-1 strains.

No MeSH data available.


Related in: MedlinePlus

Treatment of HIV-1 cell-associated virus. Chronically HIV-1-infected H9 (A) and PBMC (B) cells were incubated with serial two-fold dilutions of silver nanoparticles for 1 min and 60 min. Treated cells were centrifuged, washed three times with cell culture media, and then added to TZM-bl cells. Assessment of HIV-1 infection was made with a luciferase-based assay after 48 h. The assay was performed in triplicate; the error bars indicate the s.e.m.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2818642&req=5

Figure 4: Treatment of HIV-1 cell-associated virus. Chronically HIV-1-infected H9 (A) and PBMC (B) cells were incubated with serial two-fold dilutions of silver nanoparticles for 1 min and 60 min. Treated cells were centrifuged, washed three times with cell culture media, and then added to TZM-bl cells. Assessment of HIV-1 infection was made with a luciferase-based assay after 48 h. The assay was performed in triplicate; the error bars indicate the s.e.m.

Mentions: Silver nanoparticles were also effective against the transmission of HIV-1 infection mediated by chronically infected PBMC and H9 (human lymphoid cell line). Transmission was 50% reduced, even when both cell types were treated with the nanoparticles for 1 min (Figure 4A-B).


Mode of antiviral action of silver nanoparticles against HIV-1.

Lara HH, Ayala-Nuñez NV, Ixtepan-Turrent L, Rodriguez-Padilla C - J Nanobiotechnology (2010)

Treatment of HIV-1 cell-associated virus. Chronically HIV-1-infected H9 (A) and PBMC (B) cells were incubated with serial two-fold dilutions of silver nanoparticles for 1 min and 60 min. Treated cells were centrifuged, washed three times with cell culture media, and then added to TZM-bl cells. Assessment of HIV-1 infection was made with a luciferase-based assay after 48 h. The assay was performed in triplicate; the error bars indicate the s.e.m.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2818642&req=5

Figure 4: Treatment of HIV-1 cell-associated virus. Chronically HIV-1-infected H9 (A) and PBMC (B) cells were incubated with serial two-fold dilutions of silver nanoparticles for 1 min and 60 min. Treated cells were centrifuged, washed three times with cell culture media, and then added to TZM-bl cells. Assessment of HIV-1 infection was made with a luciferase-based assay after 48 h. The assay was performed in triplicate; the error bars indicate the s.e.m.
Mentions: Silver nanoparticles were also effective against the transmission of HIV-1 infection mediated by chronically infected PBMC and H9 (human lymphoid cell line). Transmission was 50% reduced, even when both cell types were treated with the nanoparticles for 1 min (Figure 4A-B).

Bottom Line: Our data suggest that silver nanoparticles exert anti-HIV activity at an early stage of viral replication, most likely as a virucidal agent or as an inhibitor of viral entry.Besides, silver nanoparticles inhibit post-entry stages of the HIV-1 life cycle.These properties make them a broad-spectrum agent not prone to inducing resistance that could be used preventively against a wide variety of circulating HIV-1 strains.

View Article: PubMed Central - HTML - PubMed

Affiliation: Laboratorio de Inmunología y Virología, Departamento de Microbiología e Inmunología, Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Mexico.

ABSTRACT

Background: Silver nanoparticles have proven to exert antiviral activity against HIV-1 at non-cytotoxic concentrations, but the mechanism underlying their HIV-inhibitory activity has not been not fully elucidated. In this study, silver nanoparticles are evaluated to elucidate their mode of antiviral action against HIV-1 using a panel of different in vitro assays.

Results: Our data suggest that silver nanoparticles exert anti-HIV activity at an early stage of viral replication, most likely as a virucidal agent or as an inhibitor of viral entry. Silver nanoparticles bind to gp120 in a manner that prevents CD4-dependent virion binding, fusion, and infectivity, acting as an effective virucidal agent against cell-free virus (laboratory strains, clinical isolates, T and M tropic strains, and resistant strains) and cell-associated virus. Besides, silver nanoparticles inhibit post-entry stages of the HIV-1 life cycle.

Conclusions: These properties make them a broad-spectrum agent not prone to inducing resistance that could be used preventively against a wide variety of circulating HIV-1 strains.

No MeSH data available.


Related in: MedlinePlus