Limits...
The inflammatory response seen when human omental adipose tissue explants are incubated in primary culture is not dependent upon albumin and is primarily in the nonfat cells.

Fain JN, Cheema P, Tichansky DS, Madan AK - J Inflamm (Lond) (2010)

Bottom Line: In the nonfat cells derived by a 2 h collagenase digestion of omental fat there was an inflammatory response comparable but not greater than that seen in tissue.The inflammatory response was not seen with respect to omentin/intelectin.The marked inflammatory response seen when human omental adipose tissue is incubated in vitro is reduced but not abolished in the presence of albumin with respect to IL-1beta, TNFalpha, IL-8, and is primarily in the nonfat cells of adipose tissue.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Molecular Sciences, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA.

ABSTRACT

Background: The present studies were designed to investigate the changes in gene expression during in vitro incubation of human visceral omental adipose tissue explants as well as fat cells and nonfat cells derived from omental fat.

Methods: Adipose tissue was obtained from extremely obese women undergoing bariatric surgery. Explants of the tissue as well as fat cells and the nonfat cells derived by digestion with collagenase were incubated for 20 minutes to 48 h. The expression of interleukin 1beta [IL-1beta], tumor necrosis factor alpha [TNFalpha], interleukin 8 [IL-8], NFkappaB(1)p50 subunit, hypoxia-inducible factor 1alpha [HIF1alpha], omentin/intelectin, and 11beta-hydroxysteroid dehydrogenase 1 [11beta-HSD1] mRNA were measured by qPCR as well as the release of IL-8 and TNFalpha.

Results: There was an inflammatory response at 2 h in explants of omental adipose tissue that was reduced but not abolished in the absence of albumin from the incubation buffer for IL-8, IL-1beta and TNFalpha. There was also an inflammatory response with regard to upregulation of HIF1alpha and NFkappaB1 gene expression that was unaffected whether albumin was present or absent from the medium. In the nonfat cells derived by a 2 h collagenase digestion of omental fat there was an inflammatory response comparable but not greater than that seen in tissue. The exception was HIF1alpha where the marked increase in gene expression was primarily seen in intact tissue. The inflammatory response was not seen with respect to omentin/intelectin. Over a subsequent 48 h incubation there was a marked increase in IL-8 mRNA expression and IL-8 release in adipose tissue explants that was also seen to the same extent in the nonfat cells incubated in the absence of fat cells.

Conclusion: The marked inflammatory response seen when human omental adipose tissue is incubated in vitro is reduced but not abolished in the presence of albumin with respect to IL-1beta, TNFalpha, IL-8, and is primarily in the nonfat cells of adipose tissue.

No MeSH data available.


Related in: MedlinePlus

The inflammatory response in incubated human omental adipose tissue is primarily in nonfat cells and independent of collagenase digestion. Explants of human omental adipose tissue were taken for mRNA extraction either at the start or end of 2 h incubation while the values for fat cells and nonfat cells were obtained after a 2 h incubation of adipose tissue with collagenase. The values are based on 6-8 experiments from as many different individuals and shown as the mean ± SEM of the ratios of mRNA relative to that of cyclophilin A [log2 scale]. Statistically significant changes in tissue samples at 2 h, fat cell and nonfat cells as compared to unincubated tissue (to) are indicated as follows: * P < 0.05 and ** P < 0.025. The differences between fat cells and non-fat cells were statistically significant (P < 0.05) for TNFα, IL-1β, IL-8 and omentin.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2818611&req=5

Figure 3: The inflammatory response in incubated human omental adipose tissue is primarily in nonfat cells and independent of collagenase digestion. Explants of human omental adipose tissue were taken for mRNA extraction either at the start or end of 2 h incubation while the values for fat cells and nonfat cells were obtained after a 2 h incubation of adipose tissue with collagenase. The values are based on 6-8 experiments from as many different individuals and shown as the mean ± SEM of the ratios of mRNA relative to that of cyclophilin A [log2 scale]. Statistically significant changes in tissue samples at 2 h, fat cell and nonfat cells as compared to unincubated tissue (to) are indicated as follows: * P < 0.05 and ** P < 0.025. The differences between fat cells and non-fat cells were statistically significant (P < 0.05) for TNFα, IL-1β, IL-8 and omentin.

Mentions: The next series of experiments were designed to see whether the enhanced gene expression of IL-1β, TNFα, and IL-8 was in the fat cells the nonfat cells or both. Because of the rapid up-regulation of inflammatory genes in studies comparing the response in fat cells and nonfat cells, it was necessary to use tissue controls incubated for the length of time required for collagenase digestion of adipose tissue. The data in Figure 3 demonstrate that the increases in the mRNAs for IL-1β, TNFα, NFκB1 and IL-8 were far higher in nonfat than in fat cells isolated from adipose tissue after 2 h incubation with collagenase. These differences were statistically significant with a P < 0.025. Furthermore, the expression of the mRNAs for IL-1β, TNFα, and IL-8 in nonfat cells was equivalent to that in intact tissue incubated for the same period of time without collagenase.


The inflammatory response seen when human omental adipose tissue explants are incubated in primary culture is not dependent upon albumin and is primarily in the nonfat cells.

Fain JN, Cheema P, Tichansky DS, Madan AK - J Inflamm (Lond) (2010)

The inflammatory response in incubated human omental adipose tissue is primarily in nonfat cells and independent of collagenase digestion. Explants of human omental adipose tissue were taken for mRNA extraction either at the start or end of 2 h incubation while the values for fat cells and nonfat cells were obtained after a 2 h incubation of adipose tissue with collagenase. The values are based on 6-8 experiments from as many different individuals and shown as the mean ± SEM of the ratios of mRNA relative to that of cyclophilin A [log2 scale]. Statistically significant changes in tissue samples at 2 h, fat cell and nonfat cells as compared to unincubated tissue (to) are indicated as follows: * P < 0.05 and ** P < 0.025. The differences between fat cells and non-fat cells were statistically significant (P < 0.05) for TNFα, IL-1β, IL-8 and omentin.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2818611&req=5

Figure 3: The inflammatory response in incubated human omental adipose tissue is primarily in nonfat cells and independent of collagenase digestion. Explants of human omental adipose tissue were taken for mRNA extraction either at the start or end of 2 h incubation while the values for fat cells and nonfat cells were obtained after a 2 h incubation of adipose tissue with collagenase. The values are based on 6-8 experiments from as many different individuals and shown as the mean ± SEM of the ratios of mRNA relative to that of cyclophilin A [log2 scale]. Statistically significant changes in tissue samples at 2 h, fat cell and nonfat cells as compared to unincubated tissue (to) are indicated as follows: * P < 0.05 and ** P < 0.025. The differences between fat cells and non-fat cells were statistically significant (P < 0.05) for TNFα, IL-1β, IL-8 and omentin.
Mentions: The next series of experiments were designed to see whether the enhanced gene expression of IL-1β, TNFα, and IL-8 was in the fat cells the nonfat cells or both. Because of the rapid up-regulation of inflammatory genes in studies comparing the response in fat cells and nonfat cells, it was necessary to use tissue controls incubated for the length of time required for collagenase digestion of adipose tissue. The data in Figure 3 demonstrate that the increases in the mRNAs for IL-1β, TNFα, NFκB1 and IL-8 were far higher in nonfat than in fat cells isolated from adipose tissue after 2 h incubation with collagenase. These differences were statistically significant with a P < 0.025. Furthermore, the expression of the mRNAs for IL-1β, TNFα, and IL-8 in nonfat cells was equivalent to that in intact tissue incubated for the same period of time without collagenase.

Bottom Line: In the nonfat cells derived by a 2 h collagenase digestion of omental fat there was an inflammatory response comparable but not greater than that seen in tissue.The inflammatory response was not seen with respect to omentin/intelectin.The marked inflammatory response seen when human omental adipose tissue is incubated in vitro is reduced but not abolished in the presence of albumin with respect to IL-1beta, TNFalpha, IL-8, and is primarily in the nonfat cells of adipose tissue.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Molecular Sciences, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA.

ABSTRACT

Background: The present studies were designed to investigate the changes in gene expression during in vitro incubation of human visceral omental adipose tissue explants as well as fat cells and nonfat cells derived from omental fat.

Methods: Adipose tissue was obtained from extremely obese women undergoing bariatric surgery. Explants of the tissue as well as fat cells and the nonfat cells derived by digestion with collagenase were incubated for 20 minutes to 48 h. The expression of interleukin 1beta [IL-1beta], tumor necrosis factor alpha [TNFalpha], interleukin 8 [IL-8], NFkappaB(1)p50 subunit, hypoxia-inducible factor 1alpha [HIF1alpha], omentin/intelectin, and 11beta-hydroxysteroid dehydrogenase 1 [11beta-HSD1] mRNA were measured by qPCR as well as the release of IL-8 and TNFalpha.

Results: There was an inflammatory response at 2 h in explants of omental adipose tissue that was reduced but not abolished in the absence of albumin from the incubation buffer for IL-8, IL-1beta and TNFalpha. There was also an inflammatory response with regard to upregulation of HIF1alpha and NFkappaB1 gene expression that was unaffected whether albumin was present or absent from the medium. In the nonfat cells derived by a 2 h collagenase digestion of omental fat there was an inflammatory response comparable but not greater than that seen in tissue. The exception was HIF1alpha where the marked increase in gene expression was primarily seen in intact tissue. The inflammatory response was not seen with respect to omentin/intelectin. Over a subsequent 48 h incubation there was a marked increase in IL-8 mRNA expression and IL-8 release in adipose tissue explants that was also seen to the same extent in the nonfat cells incubated in the absence of fat cells.

Conclusion: The marked inflammatory response seen when human omental adipose tissue is incubated in vitro is reduced but not abolished in the presence of albumin with respect to IL-1beta, TNFalpha, IL-8, and is primarily in the nonfat cells of adipose tissue.

No MeSH data available.


Related in: MedlinePlus