Limits...
The Open AUC Project.

Cölfen H, Laue TM, Wohlleben W, Schilling K, Karabudak E, Langhorst BW, Brookes E, Dubbs B, Zollars D, Rocco M, Demeler B - Eur. Biophys. J. (2009)

Bottom Line: This ultracentrifuge will be equipped with multiple and interchangeable optical tracks so that state-of-the-art electronics and improved detectors will be available for a variety of optical systems.The instrument will be complemented by a new rotor, enhanced data acquisition and analysis software, as well as collaboration software.Described here are the instrument, the modular software components, and a standardized database that will encourage and ease integration of data analysis and interpretation software.

View Article: PubMed Central - PubMed

Affiliation: Colloid Chemistry, Max-Planck-Institute of Colloids and Interfaces, Research Campus Golm, Am Mühlenberg, 14424 Potsdam, Germany.

ABSTRACT
Progress in analytical ultracentrifugation (AUC) has been hindered by obstructions to hardware innovation and by software incompatibility. In this paper, we announce and outline the Open AUC Project. The goals of the Open AUC Project are to stimulate AUC innovation by improving instrumentation, detectors, acquisition and analysis software, and collaborative tools. These improvements are needed for the next generation of AUC-based research. The Open AUC Project combines on-going work from several different groups. A new base instrument is described, one that is designed from the ground up to be an analytical ultracentrifuge. This machine offers an open architecture, hardware standards, and application programming interfaces for detector developers. All software will use the GNU Public License to assure that intellectual property is available in open source format. The Open AUC strategy facilitates collaborations, encourages sharing, and eliminates the chronic impediments that have plagued AUC innovation for the last 20 years. This ultracentrifuge will be equipped with multiple and interchangeable optical tracks so that state-of-the-art electronics and improved detectors will be available for a variety of optical systems. The instrument will be complemented by a new rotor, enhanced data acquisition and analysis software, as well as collaboration software. Described here are the instrument, the modular software components, and a standardized database that will encourage and ease integration of data analysis and interpretation software.

Show MeSH

Related in: MedlinePlus

The analytical ultracentrifuge for the Open AUC Project is simply a rotating sample holder that sits in three optical paths simultaneously. Sketches are shown of the CFA (A, B) and fiber composite eight hole rotor (C) being developed for the Open AUC Project by Spin Analytical. The base centrifuge (A, B) simply consists of a vacuum containment chamber (a), a rotor (b), and high-speed motor (c). Since only analytical rotors will be used in this instrument, a shorter rotor chamber may be used. Three optical tracks are arranged at 120° intervals around the chamber. The optical tracks (B) have to use a periscope to avoid the drive motor. While complicating the optical path somewhat, using the periscopes means that the CFA can accommodate different drive motors, thus providing flexibility for future designs. The new rotor (C) being developed by Spin Analytical holds eight samples and may be operated at speeds up to 60,000 rpm. The sample holders are compatible with existing cell components
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2812709&req=5

Fig2: The analytical ultracentrifuge for the Open AUC Project is simply a rotating sample holder that sits in three optical paths simultaneously. Sketches are shown of the CFA (A, B) and fiber composite eight hole rotor (C) being developed for the Open AUC Project by Spin Analytical. The base centrifuge (A, B) simply consists of a vacuum containment chamber (a), a rotor (b), and high-speed motor (c). Since only analytical rotors will be used in this instrument, a shorter rotor chamber may be used. Three optical tracks are arranged at 120° intervals around the chamber. The optical tracks (B) have to use a periscope to avoid the drive motor. While complicating the optical path somewhat, using the periscopes means that the CFA can accommodate different drive motors, thus providing flexibility for future designs. The new rotor (C) being developed by Spin Analytical holds eight samples and may be operated at speeds up to 60,000 rpm. The sample holders are compatible with existing cell components

Mentions: A new analytical ultracentrifuge by Spin Analytical Inc. (Durham, NH), the centrifugal fluid analyzer (CFA), is being developed specifically for the Open AUC Project. This base instrument will facilitate significant improvements to the traditional AUC optical systems (absorbance, interference, and fluorescence) and, more importantly, stimulate the development of new optical detectors as outlined above. The CFA serves as a spinning sample holder (Fig. 2). All light sources and detectors are external to the rotor chamber. Three 50-mm diameter optical tracks are positioned at 120° intervals around the rotor chamber. The larger diameter optics will overcome fundamental accuracy limits in the XLI Rayleigh optics (Yphantis et al. 1994). In addition, optical systems, which require multiple lenses and other optical components and thus a long optical path like the ultrasensitive Schlieren optics (Cölfen and Borchard 1994) can be realized. Optical working distances to the sample cells are minimized (~8–10 cm, set by safety considerations) to optimize radial resolution.Fig. 2


The Open AUC Project.

Cölfen H, Laue TM, Wohlleben W, Schilling K, Karabudak E, Langhorst BW, Brookes E, Dubbs B, Zollars D, Rocco M, Demeler B - Eur. Biophys. J. (2009)

The analytical ultracentrifuge for the Open AUC Project is simply a rotating sample holder that sits in three optical paths simultaneously. Sketches are shown of the CFA (A, B) and fiber composite eight hole rotor (C) being developed for the Open AUC Project by Spin Analytical. The base centrifuge (A, B) simply consists of a vacuum containment chamber (a), a rotor (b), and high-speed motor (c). Since only analytical rotors will be used in this instrument, a shorter rotor chamber may be used. Three optical tracks are arranged at 120° intervals around the chamber. The optical tracks (B) have to use a periscope to avoid the drive motor. While complicating the optical path somewhat, using the periscopes means that the CFA can accommodate different drive motors, thus providing flexibility for future designs. The new rotor (C) being developed by Spin Analytical holds eight samples and may be operated at speeds up to 60,000 rpm. The sample holders are compatible with existing cell components
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2812709&req=5

Fig2: The analytical ultracentrifuge for the Open AUC Project is simply a rotating sample holder that sits in three optical paths simultaneously. Sketches are shown of the CFA (A, B) and fiber composite eight hole rotor (C) being developed for the Open AUC Project by Spin Analytical. The base centrifuge (A, B) simply consists of a vacuum containment chamber (a), a rotor (b), and high-speed motor (c). Since only analytical rotors will be used in this instrument, a shorter rotor chamber may be used. Three optical tracks are arranged at 120° intervals around the chamber. The optical tracks (B) have to use a periscope to avoid the drive motor. While complicating the optical path somewhat, using the periscopes means that the CFA can accommodate different drive motors, thus providing flexibility for future designs. The new rotor (C) being developed by Spin Analytical holds eight samples and may be operated at speeds up to 60,000 rpm. The sample holders are compatible with existing cell components
Mentions: A new analytical ultracentrifuge by Spin Analytical Inc. (Durham, NH), the centrifugal fluid analyzer (CFA), is being developed specifically for the Open AUC Project. This base instrument will facilitate significant improvements to the traditional AUC optical systems (absorbance, interference, and fluorescence) and, more importantly, stimulate the development of new optical detectors as outlined above. The CFA serves as a spinning sample holder (Fig. 2). All light sources and detectors are external to the rotor chamber. Three 50-mm diameter optical tracks are positioned at 120° intervals around the rotor chamber. The larger diameter optics will overcome fundamental accuracy limits in the XLI Rayleigh optics (Yphantis et al. 1994). In addition, optical systems, which require multiple lenses and other optical components and thus a long optical path like the ultrasensitive Schlieren optics (Cölfen and Borchard 1994) can be realized. Optical working distances to the sample cells are minimized (~8–10 cm, set by safety considerations) to optimize radial resolution.Fig. 2

Bottom Line: This ultracentrifuge will be equipped with multiple and interchangeable optical tracks so that state-of-the-art electronics and improved detectors will be available for a variety of optical systems.The instrument will be complemented by a new rotor, enhanced data acquisition and analysis software, as well as collaboration software.Described here are the instrument, the modular software components, and a standardized database that will encourage and ease integration of data analysis and interpretation software.

View Article: PubMed Central - PubMed

Affiliation: Colloid Chemistry, Max-Planck-Institute of Colloids and Interfaces, Research Campus Golm, Am Mühlenberg, 14424 Potsdam, Germany.

ABSTRACT
Progress in analytical ultracentrifugation (AUC) has been hindered by obstructions to hardware innovation and by software incompatibility. In this paper, we announce and outline the Open AUC Project. The goals of the Open AUC Project are to stimulate AUC innovation by improving instrumentation, detectors, acquisition and analysis software, and collaborative tools. These improvements are needed for the next generation of AUC-based research. The Open AUC Project combines on-going work from several different groups. A new base instrument is described, one that is designed from the ground up to be an analytical ultracentrifuge. This machine offers an open architecture, hardware standards, and application programming interfaces for detector developers. All software will use the GNU Public License to assure that intellectual property is available in open source format. The Open AUC strategy facilitates collaborations, encourages sharing, and eliminates the chronic impediments that have plagued AUC innovation for the last 20 years. This ultracentrifuge will be equipped with multiple and interchangeable optical tracks so that state-of-the-art electronics and improved detectors will be available for a variety of optical systems. The instrument will be complemented by a new rotor, enhanced data acquisition and analysis software, as well as collaboration software. Described here are the instrument, the modular software components, and a standardized database that will encourage and ease integration of data analysis and interpretation software.

Show MeSH
Related in: MedlinePlus