Limits...
Differential expression of apoptotic genes PDIA3 and MAP3K5 distinguishes between low- and high-risk prostate cancer.

Pressinotti NC, Klocker H, Schäfer G, Luu VD, Ruschhaupt M, Kuner R, Steiner E, Poustka A, Bartsch G, Sültmann H - Mol. Cancer (2009)

Bottom Line: These genes were analyzed by statistical, pathway and gene enrichment methods.Twenty selected candidate genes were verified by quantitative real time PCR and immunohistochemistry.In concordance with the mRNA levels, two genes MAP3K5 and PDIA3 exposed differential protein expression.

View Article: PubMed Central - HTML - PubMed

Affiliation: German Cancer Research Center, Division of Molecular Genome Analysis, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany. nicole@diergardt.eu

ABSTRACT

Background: Despite recent progress in the identification of genetic and molecular alterations in prostate cancer, markers associated with tumor progression are scarce. Therefore precise diagnosis of patients and prognosis of the disease remain difficult. This study investigated novel molecular markers discriminating between low and highly aggressive types of prostate cancer.

Results: Using 52 microdissected cell populations of low- and high-risk prostate tumors, we identified via global cDNA microarrays analysis almost 1200 genes being differentially expressed among these groups. These genes were analyzed by statistical, pathway and gene enrichment methods. Twenty selected candidate genes were verified by quantitative real time PCR and immunohistochemistry. In concordance with the mRNA levels, two genes MAP3K5 and PDIA3 exposed differential protein expression. Functional characterization of PDIA3 revealed a pro-apoptotic role of this gene in PC3 prostate cancer cells.

Conclusions: Our analyses provide deeper insights into the molecular changes occurring during prostate cancer progression. The genes MAP3K5 and PDIA3 are associated with malignant stages of prostate cancer and therefore provide novel potential biomarkers.

Show MeSH

Related in: MedlinePlus

IHC analysis of Gleason grade-associated protein expression of PDIA3 and MAP3K5. Summary of PDIA3 and MAP3K5 protein expression quantification in tissue samples. Paraffin tissue sections were stained according to a standard IHC protocol using a staining automate and immunoreactivity of the different Gleason patterns identified in each specimen were scored by an uropathologist according to a 4 point scale (no - 0, weak - 1, intermediate - 2 and strong - 3 staining). For both antigens immunoreactivity was higher in tumors than in benign epithelium in accordance with the gene expression and real-time PCR data. Within the different tumor patterns staining intensity increased from CA3 to CA4 and decreased in the most dedifferentiated CA5 tumor regions. Interestingly, PDIA3 staining intensity in CA 3 regions within GS6 tumors (CA3 CS6) and within GS8 tumors (CA3 GS8) differed significantly, whereas this was not observed with MAP3K5. (B: Benign tissue; CA3: Gleason pattern 3, CA4: Gleason pattern 4, CA5: Gleason pattern 5).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2807430&req=5

Figure 2: IHC analysis of Gleason grade-associated protein expression of PDIA3 and MAP3K5. Summary of PDIA3 and MAP3K5 protein expression quantification in tissue samples. Paraffin tissue sections were stained according to a standard IHC protocol using a staining automate and immunoreactivity of the different Gleason patterns identified in each specimen were scored by an uropathologist according to a 4 point scale (no - 0, weak - 1, intermediate - 2 and strong - 3 staining). For both antigens immunoreactivity was higher in tumors than in benign epithelium in accordance with the gene expression and real-time PCR data. Within the different tumor patterns staining intensity increased from CA3 to CA4 and decreased in the most dedifferentiated CA5 tumor regions. Interestingly, PDIA3 staining intensity in CA 3 regions within GS6 tumors (CA3 CS6) and within GS8 tumors (CA3 GS8) differed significantly, whereas this was not observed with MAP3K5. (B: Benign tissue; CA3: Gleason pattern 3, CA4: Gleason pattern 4, CA5: Gleason pattern 5).

Mentions: To confirm our data at the protein level, we performed immunohistochemical analysis of the proteins MAP3K5 and PDIA3 representing the largest functional group (apoptosis) of validated genes. Specificity of antibodies was controlled using western blotting (data not shown). Protein expression levels in tumor tissue samples were scored according to a 4 point scoring system. Lowest expression levels of MAP3K5 and PDIA3 proteins were seen in benign epithelial cells (Figure 2). In agreement with the transcript analyses, MAP3K5 exhibited a significant Gleason grade-associated protein expression (p < 0.01, Wilcoxon signed rank test). Highest expression levels were observed in Gleason pattern 4 regions (mean 1.8) whereas Gleason pattern 3 (mean 1.2) and Gleason pattern 5 tumor regions (mean 1.19) displayed lower immunoreactivity. Of note, we also observed significant protein overexpression in prostate intraepithelial neoplasia (PIN) and in regions of inflammation (data not shown), which is in agreement with the described involvement of MAP3K5 with inflammation processes. Immunostaining was observed in the cytoplasm.


Differential expression of apoptotic genes PDIA3 and MAP3K5 distinguishes between low- and high-risk prostate cancer.

Pressinotti NC, Klocker H, Schäfer G, Luu VD, Ruschhaupt M, Kuner R, Steiner E, Poustka A, Bartsch G, Sültmann H - Mol. Cancer (2009)

IHC analysis of Gleason grade-associated protein expression of PDIA3 and MAP3K5. Summary of PDIA3 and MAP3K5 protein expression quantification in tissue samples. Paraffin tissue sections were stained according to a standard IHC protocol using a staining automate and immunoreactivity of the different Gleason patterns identified in each specimen were scored by an uropathologist according to a 4 point scale (no - 0, weak - 1, intermediate - 2 and strong - 3 staining). For both antigens immunoreactivity was higher in tumors than in benign epithelium in accordance with the gene expression and real-time PCR data. Within the different tumor patterns staining intensity increased from CA3 to CA4 and decreased in the most dedifferentiated CA5 tumor regions. Interestingly, PDIA3 staining intensity in CA 3 regions within GS6 tumors (CA3 CS6) and within GS8 tumors (CA3 GS8) differed significantly, whereas this was not observed with MAP3K5. (B: Benign tissue; CA3: Gleason pattern 3, CA4: Gleason pattern 4, CA5: Gleason pattern 5).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2807430&req=5

Figure 2: IHC analysis of Gleason grade-associated protein expression of PDIA3 and MAP3K5. Summary of PDIA3 and MAP3K5 protein expression quantification in tissue samples. Paraffin tissue sections were stained according to a standard IHC protocol using a staining automate and immunoreactivity of the different Gleason patterns identified in each specimen were scored by an uropathologist according to a 4 point scale (no - 0, weak - 1, intermediate - 2 and strong - 3 staining). For both antigens immunoreactivity was higher in tumors than in benign epithelium in accordance with the gene expression and real-time PCR data. Within the different tumor patterns staining intensity increased from CA3 to CA4 and decreased in the most dedifferentiated CA5 tumor regions. Interestingly, PDIA3 staining intensity in CA 3 regions within GS6 tumors (CA3 CS6) and within GS8 tumors (CA3 GS8) differed significantly, whereas this was not observed with MAP3K5. (B: Benign tissue; CA3: Gleason pattern 3, CA4: Gleason pattern 4, CA5: Gleason pattern 5).
Mentions: To confirm our data at the protein level, we performed immunohistochemical analysis of the proteins MAP3K5 and PDIA3 representing the largest functional group (apoptosis) of validated genes. Specificity of antibodies was controlled using western blotting (data not shown). Protein expression levels in tumor tissue samples were scored according to a 4 point scoring system. Lowest expression levels of MAP3K5 and PDIA3 proteins were seen in benign epithelial cells (Figure 2). In agreement with the transcript analyses, MAP3K5 exhibited a significant Gleason grade-associated protein expression (p < 0.01, Wilcoxon signed rank test). Highest expression levels were observed in Gleason pattern 4 regions (mean 1.8) whereas Gleason pattern 3 (mean 1.2) and Gleason pattern 5 tumor regions (mean 1.19) displayed lower immunoreactivity. Of note, we also observed significant protein overexpression in prostate intraepithelial neoplasia (PIN) and in regions of inflammation (data not shown), which is in agreement with the described involvement of MAP3K5 with inflammation processes. Immunostaining was observed in the cytoplasm.

Bottom Line: These genes were analyzed by statistical, pathway and gene enrichment methods.Twenty selected candidate genes were verified by quantitative real time PCR and immunohistochemistry.In concordance with the mRNA levels, two genes MAP3K5 and PDIA3 exposed differential protein expression.

View Article: PubMed Central - HTML - PubMed

Affiliation: German Cancer Research Center, Division of Molecular Genome Analysis, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany. nicole@diergardt.eu

ABSTRACT

Background: Despite recent progress in the identification of genetic and molecular alterations in prostate cancer, markers associated with tumor progression are scarce. Therefore precise diagnosis of patients and prognosis of the disease remain difficult. This study investigated novel molecular markers discriminating between low and highly aggressive types of prostate cancer.

Results: Using 52 microdissected cell populations of low- and high-risk prostate tumors, we identified via global cDNA microarrays analysis almost 1200 genes being differentially expressed among these groups. These genes were analyzed by statistical, pathway and gene enrichment methods. Twenty selected candidate genes were verified by quantitative real time PCR and immunohistochemistry. In concordance with the mRNA levels, two genes MAP3K5 and PDIA3 exposed differential protein expression. Functional characterization of PDIA3 revealed a pro-apoptotic role of this gene in PC3 prostate cancer cells.

Conclusions: Our analyses provide deeper insights into the molecular changes occurring during prostate cancer progression. The genes MAP3K5 and PDIA3 are associated with malignant stages of prostate cancer and therefore provide novel potential biomarkers.

Show MeSH
Related in: MedlinePlus