Limits...
The mitochondrial ribosomal protein of the large subunit, Afo1p, determines cellular longevity through mitochondrial back-signaling via TOR1.

Heeren G, Rinnerthaler M, Laun P, von Seyerl P, Kössler S, Klinger H, Hager M, Bogengruber E, Jarolim S, Simon-Nobbe B, Schüller C, Carmona-Gutierrez D, Breitenbach-Koller L, Mück C, Jansen-Dürr P, Criollo A, Kroemer G, Madeo F, Breitenbach M - Aging (Albany NY) (2009)

Bottom Line: Despite the respiratory deficiency the mutant has paradoxical increase in growth rate compared to generic petite mutants.A comparison of the single and double mutant strains for afo1 and fob1 shows that the longevity phenotype of afo1 is independent of the formation of ERCs (ribosomal DNA minicircles).AFO1/MRPL25 function establishes a new connection between mitochondria, metabolism and aging.

View Article: PubMed Central - PubMed

Affiliation: Department of Cell Biology, Division of Genetics, University of Salzburg, 5020 Salzburg, Austria.

ABSTRACT
Yeast mother cell-specific aging constitutes a model of replicative aging as it occurs in stem cell populations of higher eukaryotes. Here, we present a new long-lived yeast deletion mutation,afo1 (for aging factor one), that confers a 60% increase in replicative lifespan. AFO1/MRPL25 codes for a protein that is contained in the large subunit of the mitochondrial ribosome. Double mutant experiments indicate that the longevity-increasing action of the afo1 mutation is independent of mitochondrial translation, yet involves the cytoplasmic Tor1p as well as the growth-controlling transcription factor Sfp1p. In their final cell cycle, the long-lived mutant cells do show the phenotypes of yeast apoptosis indicating that the longevity of the mutant is not caused by an inability to undergo programmed cell death. Furthermore, the afo1 mutation displays high resistance against oxidants. Despite the respiratory deficiency the mutant has paradoxical increase in growth rate compared to generic petite mutants. A comparison of the single and double mutant strains for afo1 and fob1 shows that the longevity phenotype of afo1 is independent of the formation of ERCs (ribosomal DNA minicircles). AFO1/MRPL25 function establishes a new connection between mitochondria, metabolism and aging.

Show MeSH
Deletion strains corresponding to the two                                        genes adjacent to AFO1 are shown. These deletions have no influence on the resistance to oxidants.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2806038&req=5

F2C: Deletion strains corresponding to the two genes adjacent to AFO1 are shown. These deletions have no influence on the resistance to oxidants.

Mentions: To obtain definite genetic proof that the AFO1 deletion caused the resistance against oxidative stress and the extension of the life span described above, we performed co-segregation tests in meiotic tetrads after out-crossing the afo1Δ strain in an isogenic cross. In 10 unselected tetrads, which all revealed a regular 2:2 segregation, we observed strict co-segregation of G418 resistance indicating the presence of the gene deletion, respiratory deficiency, and resistance against hydrogen peroxide stress (Figure 2A). We also tested the lifespan of all four haploid progeny of one tetrad and found consistent co-segregation of the deletion allele of afo1 with extended lifespan (Figure 2B). Furthermore, we also tested if the phenotype of the mutant might result from changes of the expression of the two neighboring genes of AFO1. No such effect was apparent (Figure 2C). We conclude that lack of AFO1 results in long lifespan and the oxidative stress resistance.


The mitochondrial ribosomal protein of the large subunit, Afo1p, determines cellular longevity through mitochondrial back-signaling via TOR1.

Heeren G, Rinnerthaler M, Laun P, von Seyerl P, Kössler S, Klinger H, Hager M, Bogengruber E, Jarolim S, Simon-Nobbe B, Schüller C, Carmona-Gutierrez D, Breitenbach-Koller L, Mück C, Jansen-Dürr P, Criollo A, Kroemer G, Madeo F, Breitenbach M - Aging (Albany NY) (2009)

Deletion strains corresponding to the two                                        genes adjacent to AFO1 are shown. These deletions have no influence on the resistance to oxidants.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2806038&req=5

F2C: Deletion strains corresponding to the two genes adjacent to AFO1 are shown. These deletions have no influence on the resistance to oxidants.
Mentions: To obtain definite genetic proof that the AFO1 deletion caused the resistance against oxidative stress and the extension of the life span described above, we performed co-segregation tests in meiotic tetrads after out-crossing the afo1Δ strain in an isogenic cross. In 10 unselected tetrads, which all revealed a regular 2:2 segregation, we observed strict co-segregation of G418 resistance indicating the presence of the gene deletion, respiratory deficiency, and resistance against hydrogen peroxide stress (Figure 2A). We also tested the lifespan of all four haploid progeny of one tetrad and found consistent co-segregation of the deletion allele of afo1 with extended lifespan (Figure 2B). Furthermore, we also tested if the phenotype of the mutant might result from changes of the expression of the two neighboring genes of AFO1. No such effect was apparent (Figure 2C). We conclude that lack of AFO1 results in long lifespan and the oxidative stress resistance.

Bottom Line: Despite the respiratory deficiency the mutant has paradoxical increase in growth rate compared to generic petite mutants.A comparison of the single and double mutant strains for afo1 and fob1 shows that the longevity phenotype of afo1 is independent of the formation of ERCs (ribosomal DNA minicircles).AFO1/MRPL25 function establishes a new connection between mitochondria, metabolism and aging.

View Article: PubMed Central - PubMed

Affiliation: Department of Cell Biology, Division of Genetics, University of Salzburg, 5020 Salzburg, Austria.

ABSTRACT
Yeast mother cell-specific aging constitutes a model of replicative aging as it occurs in stem cell populations of higher eukaryotes. Here, we present a new long-lived yeast deletion mutation,afo1 (for aging factor one), that confers a 60% increase in replicative lifespan. AFO1/MRPL25 codes for a protein that is contained in the large subunit of the mitochondrial ribosome. Double mutant experiments indicate that the longevity-increasing action of the afo1 mutation is independent of mitochondrial translation, yet involves the cytoplasmic Tor1p as well as the growth-controlling transcription factor Sfp1p. In their final cell cycle, the long-lived mutant cells do show the phenotypes of yeast apoptosis indicating that the longevity of the mutant is not caused by an inability to undergo programmed cell death. Furthermore, the afo1 mutation displays high resistance against oxidants. Despite the respiratory deficiency the mutant has paradoxical increase in growth rate compared to generic petite mutants. A comparison of the single and double mutant strains for afo1 and fob1 shows that the longevity phenotype of afo1 is independent of the formation of ERCs (ribosomal DNA minicircles). AFO1/MRPL25 function establishes a new connection between mitochondria, metabolism and aging.

Show MeSH