Limits...
Prostatic acid phosphatase is expressed in peptidergic and nonpeptidergic nociceptive neurons of mice and rats.

Taylor-Blake B, Zylka MJ - PLoS ONE (2010)

Bottom Line: Previously, we found that TMPase was molecularly identical to Prostatic acid phosphatase (PAP) using mice.Although PAP is found in peptidergic and nonpeptidergic neurons of mice and rats, the percentage of PAP+ neurons that express these markers differs between species.Collectively, our studies highlight similarities and differences in PAP localization within nociceptive neurons of mice and rats.

View Article: PubMed Central - PubMed

Affiliation: Department of Cell and Molecular Physiology, UNC Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, USA.

ABSTRACT
Thiamine monophosphatase (TMPase, also known as Fluoride-resistant acid phosphatase or FRAP) is a classic histochemical marker of small- to medium-diameter dorsal root ganglia (DRG) neurons and has primarily been studied in the rat. Previously, we found that TMPase was molecularly identical to Prostatic acid phosphatase (PAP) using mice. In addition, PAP was expressed in a majority of nonpeptidergic, isolectin B4-binding (IB4+) nociceptive neurons and a subset of peptidergic, calcitonin gene-related peptide-containing (CGRP+) nociceptive neurons. At the time, we were unable to determine if PAP was present in rat DRG neurons because the antibody we used did not cross-react with PAP in rat tissues. In our present study, we generated a chicken polyclonal antibody against the secretory isoform of mouse PAP. This antibody detects mouse, rat and human PAP protein on western blots. Additionally, this antibody detects PAP in mouse and rat small- to medium-diameter DRG neurons and axon terminals in lamina II of spinal cord. In the rat, 92.5% of all PAP+ cells bind the nonpeptidergic marker IB4 and 31.8% of all PAP+ cells contain the peptidergic marker CGRP. Although PAP is found in peptidergic and nonpeptidergic neurons of mice and rats, the percentage of PAP+ neurons that express these markers differs between species. Moreover, PAP+ axon terminals in the rat partially overlap with Protein kinase Cgamma (PKCgamma+) interneurons in dorsal spinal cord whereas PAP+ axon terminals in the mouse terminate dorsal to PKCgamma+ interneurons. Collectively, our studies highlight similarities and differences in PAP localization within nociceptive neurons of mice and rats.

Show MeSH

Related in: MedlinePlus

Chicken antibody detects PAP in rat DRG neurons and dorsal spinal cord.(A–D) Sections from rat L4-L6 DRG and (E–L) lumbar spinal cord were stained with chicken anti-PAP antibodies (red) and with antibodies against various sensory neuron markers and spinal interneuron marker PKCγ (blue, green). (D, H, L) Merged images. All images were acquired by confocal microscopy. Scale bar in (D) 50 µm, (H) 100 µm.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2800773&req=5

pone-0008674-g003: Chicken antibody detects PAP in rat DRG neurons and dorsal spinal cord.(A–D) Sections from rat L4-L6 DRG and (E–L) lumbar spinal cord were stained with chicken anti-PAP antibodies (red) and with antibodies against various sensory neuron markers and spinal interneuron marker PKCγ (blue, green). (D, H, L) Merged images. All images were acquired by confocal microscopy. Scale bar in (D) 50 µm, (H) 100 µm.

Mentions: We next triple-immunostained lumbar DRG and spinal cord sections from the rat to determine if our polyclonal antibody also recognized PAP in rat tissues. The chicken anti-PAP antibody labeled a subset of small- to medium-diameter neurons in rat DRG and labeled axon terminals in lamina II of the spinal cord (Figure 3A, E, I). In lumbar DRG, 92.5% of the PAP+ cells bound the nonpeptidergic marker IB4+ whereas 31.8% of PAP+ cells contained the peptidergic marker CGRP+ (n = 443 cells counted per condition) (Figure 3A–D). Conversely, 80.2% of all IB4+ were PAP+ and 41.5% of all CGRP+ neurons were PAP+ (n = 356 cells counted). These percentages obtained by triple immunofluorescence labeling closely matched previous studies where TMPase (now known to be PAP) was co-localized with markers in sections from the rat. Specifically, 95% of all TMPase+ cells were IB4+ and 50% of all TMPase+ cells were CGRP+ in the rat [14], [15], [31].


Prostatic acid phosphatase is expressed in peptidergic and nonpeptidergic nociceptive neurons of mice and rats.

Taylor-Blake B, Zylka MJ - PLoS ONE (2010)

Chicken antibody detects PAP in rat DRG neurons and dorsal spinal cord.(A–D) Sections from rat L4-L6 DRG and (E–L) lumbar spinal cord were stained with chicken anti-PAP antibodies (red) and with antibodies against various sensory neuron markers and spinal interneuron marker PKCγ (blue, green). (D, H, L) Merged images. All images were acquired by confocal microscopy. Scale bar in (D) 50 µm, (H) 100 µm.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2800773&req=5

pone-0008674-g003: Chicken antibody detects PAP in rat DRG neurons and dorsal spinal cord.(A–D) Sections from rat L4-L6 DRG and (E–L) lumbar spinal cord were stained with chicken anti-PAP antibodies (red) and with antibodies against various sensory neuron markers and spinal interneuron marker PKCγ (blue, green). (D, H, L) Merged images. All images were acquired by confocal microscopy. Scale bar in (D) 50 µm, (H) 100 µm.
Mentions: We next triple-immunostained lumbar DRG and spinal cord sections from the rat to determine if our polyclonal antibody also recognized PAP in rat tissues. The chicken anti-PAP antibody labeled a subset of small- to medium-diameter neurons in rat DRG and labeled axon terminals in lamina II of the spinal cord (Figure 3A, E, I). In lumbar DRG, 92.5% of the PAP+ cells bound the nonpeptidergic marker IB4+ whereas 31.8% of PAP+ cells contained the peptidergic marker CGRP+ (n = 443 cells counted per condition) (Figure 3A–D). Conversely, 80.2% of all IB4+ were PAP+ and 41.5% of all CGRP+ neurons were PAP+ (n = 356 cells counted). These percentages obtained by triple immunofluorescence labeling closely matched previous studies where TMPase (now known to be PAP) was co-localized with markers in sections from the rat. Specifically, 95% of all TMPase+ cells were IB4+ and 50% of all TMPase+ cells were CGRP+ in the rat [14], [15], [31].

Bottom Line: Previously, we found that TMPase was molecularly identical to Prostatic acid phosphatase (PAP) using mice.Although PAP is found in peptidergic and nonpeptidergic neurons of mice and rats, the percentage of PAP+ neurons that express these markers differs between species.Collectively, our studies highlight similarities and differences in PAP localization within nociceptive neurons of mice and rats.

View Article: PubMed Central - PubMed

Affiliation: Department of Cell and Molecular Physiology, UNC Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, USA.

ABSTRACT
Thiamine monophosphatase (TMPase, also known as Fluoride-resistant acid phosphatase or FRAP) is a classic histochemical marker of small- to medium-diameter dorsal root ganglia (DRG) neurons and has primarily been studied in the rat. Previously, we found that TMPase was molecularly identical to Prostatic acid phosphatase (PAP) using mice. In addition, PAP was expressed in a majority of nonpeptidergic, isolectin B4-binding (IB4+) nociceptive neurons and a subset of peptidergic, calcitonin gene-related peptide-containing (CGRP+) nociceptive neurons. At the time, we were unable to determine if PAP was present in rat DRG neurons because the antibody we used did not cross-react with PAP in rat tissues. In our present study, we generated a chicken polyclonal antibody against the secretory isoform of mouse PAP. This antibody detects mouse, rat and human PAP protein on western blots. Additionally, this antibody detects PAP in mouse and rat small- to medium-diameter DRG neurons and axon terminals in lamina II of spinal cord. In the rat, 92.5% of all PAP+ cells bind the nonpeptidergic marker IB4 and 31.8% of all PAP+ cells contain the peptidergic marker CGRP. Although PAP is found in peptidergic and nonpeptidergic neurons of mice and rats, the percentage of PAP+ neurons that express these markers differs between species. Moreover, PAP+ axon terminals in the rat partially overlap with Protein kinase Cgamma (PKCgamma+) interneurons in dorsal spinal cord whereas PAP+ axon terminals in the mouse terminate dorsal to PKCgamma+ interneurons. Collectively, our studies highlight similarities and differences in PAP localization within nociceptive neurons of mice and rats.

Show MeSH
Related in: MedlinePlus